[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

The Surrogate Matrix Methodology: : A Priori Error Estimation

Published: 01 January 2019 Publication History

Abstract

We give the first mathematically rigorous analysis of an emerging approach to finite element analysis (see, e.g., Bauer et al. [Appl. Numer. Math., 122 (2017), pp. 14--38]), which we hereby refer to as the surrogate matrix methodology. This methodology is based on the piecewise smooth approximation of the matrices involved in a standard finite element discretization. In particular, it relies on the projection of smooth so-called stencil functions onto high-order polynomial subspaces. The performance advantage of the surrogate matrix methodology is seen in constructions where each stencil function uniquely determines the values of a significant collection of matrix entries. Such constructions are shown to be widely achievable through the use of locally structured meshes. Therefore, this methodology can be applied to a wide variety of physically meaningful problems, including nonlinear problems and problems with curvilinear geometries. Rigorous a priori error analysis certifies the convergence of a novel surrogate method for the variable coefficient Poisson equation. The flexibility of the methodology is also demonstrated through the construction of novel methods for linear elasticity and nonlinear diffusion problems. In numerous numerical experiments, we demonstrate the efficacy of these new methods in a matrix-free environment with geometric multigrid solvers. In our experiments, up to a twenty-fold decrease in computation time is witnessed over the classical method with an otherwise identical implementation.

References

[1]
P. R. Amestoy, I. S. Duff, J.-Y. L'Excellent, and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15--41.
[2]
P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32 (2006), pp. 136--156.
[3]
P. Arbenz, G. H. van Lenthe, U. Mennel, R. Müller, and M. Sala, A scalable multi-level preconditioner for matrix-free $\mu$-finite element analysis of human bone structures, Internat. J. Numer. Methods Engrg., 73 (2008), pp. 927--947.
[4]
S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Tech. Rep. ANL-95/11 - Revision 3.9, Argonne National Laboratory, Lemont, IL, 2018.
[5]
S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser, Basel, Switzerland, 1997, pp. 163--202.
[6]
J. W. Barrett and W. B. Liu, Finite element approximation of the $p$-Laplacian, Math. Comp., 61 (1993), pp. 523--537.
[7]
S. Bauer, D. Drzisga, M. Mohr, U. Rüde, C. Waluga, and B. Wohlmuth, A stencil scaling approach for accelerating matrix-free finite element implementations, SIAM J. Sci. Comput., 40 (2018), pp. C748--C778.
[8]
S. Bauer, M. Huber, S. Ghelichkhan, M. Mohr, U. Rüde, and B. Wohlmuth, Large-scale simulation of mantle convection based on a new matrix-free approach, J. Comput. Sci., 31 (2019), pp. 60--76.
[9]
S. Bauer, M. Huber, M. Mohr, U. Rüde, and B. Wohlmuth, A new matrix-free approach for large-scale geodynamic simulations and its performance, in Computational Science--ICCS 2018, Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, F. Dongerra, and P. M. A. Sloot, eds., Springer, Cham, Switzerland, 2018, pp. 17--30.
[10]
S. Bauer, M. Mohr, U. Rüde, J. Weismüller, M. Wittmann, and B. Wohlmuth, A two-scale approach for efficient on-the-fly operator assembly in massively parallel high performance multigrid codes, Appl. Numer. Math., 122 (2017), pp. 14--38.
[11]
B. Bergen, Hierarchical Hybrid Grids: Data Structures and Core Algorithms for Efficient Finite Element Simulations on Supercomputers: Hierarchische Hybride Gitter: Datenstrukturen und Algorithmen Zur Effizienten Simulation Mit Finiten Elementen Auf Höchstleistungsrechnern, SCS Publishing House, San Diego, CA, 2005.
[12]
B. Bergen and F. Hülsemann, Hierarchical hybrid grids: Data structures and core algorithms for multigrid, Numer. Linear Algebra Appl., 11 (2004), pp. 279--291.
[13]
B. Bergen, G. Wellein, F. Hülsemann, and U. Rüde, Hierarchical hybrid grids: Achieving TERAFLOP performance on large scale finite element simulations, Internat. J. Parallel Emergent Distrib. Syst., 22 (2007), pp. 311--329.
[14]
J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355--378.
[15]
J. Bielak, O. Ghattas, and E.-J. Kim, Parallel octree-based finite element method for large-scale earthquake ground motion simulation, CMES Comput. Model. Eng. Sci., 10 (2005), pp. 99--112.
[16]
S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Springer Science & Business Media, New York, NY, 2007.
[17]
J. Brown, Efficient nonlinear solvers for nodal high-order finite elements in $3$D, J. Sci. Comput., 45 (2010), pp. 48--63.
[18]
R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis, Cengage Learning, Boston, MA, 2015.
[19]
G. F. Carey and B.-N. Jiang, Element-by-element linear and nonlinear solution schemes, Commun. Appl. Numer. Methods, 2 (1986), pp. 145--153.
[20]
P. G. Ciarlet, Three-Dimensional Elasticity, Elsevier, New York, NY, 1988.
[21]
R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Wiley, Hoboken, NJ, 1953.
[22]
D. Drzisga, B. Keith, and B. Wohlmuth, The Surrogate Matrix Methodology: Low-Cost Assembly for Isogeometric Analysis, arXiv preprint arXiv:1904.06971, 2019.
[23]
D. Drzisga, U. Rüde, and B. Wohlmuth, Stencil Scaling for Vector-Valued PDEs with Applications to Generalized Newtonian Fluids, arXiv preprint arXiv:1908.08666, 2019.
[24]
C. Engwer, R. D. Falgout, and U. M. Yang, Stencil computations for PDE-based applications with examples from DUNE and Hypre, Concurrency Comput. Practice Experience, 29 (2017), e4097.
[25]
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer Science & Business Media, New York, NY, 2013.
[26]
C. Flaig and P. Arbenz, A highly scalable matrix-free multigrid solver for $\mu$FE analysis based on a pointer-less octree, in Large-Scale Scientific Computing: 8th International Conference, LSSC 2011, Sozopol, Bulgaria, June 6-10, 2011, Revised Selected Papers, I. Lirkov, S. Margenov, and J. Waśniewski, eds., Springer, Berlin, 2012, pp. 498--506.
[27]
F. Fuentes, B. Keith, L. Demkowicz, and P. Le Tallec, Coupled variational formulations of linear elasticity and the DPG methodology, J. Comput. Phys., 348 (2017), pp. 715--731.
[28]
B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth, Towards textbook efficiency for parallel multigrid, Numer. Math. Theory Methods Appl., 8 (2015), pp. 22--46.
[29]
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985.
[30]
G. Guennebaud, B. Jacob, et al., Eigen, v3, http://eigen.tuxfamily.org, 2010.
[31]
N. Kohl, D. Thönnes, D. Drzisga, D. Bartuschat, and U. Rüde, The HyTeG finite-element software framework for scalable multigrid solvers, Internat. J. Parallel Emergent Distrib. Syst., 34 (2019), pp. 477--496.
[32]
M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. & Fluids, 63 (2012), pp. 135--147.
[33]
K. Ljungkvist, Matrix-free finite-element computations on graphics processors with adaptively refined unstructured meshes, in Proceedings of the 25th High Performance Computing Symposium, HPC '17, Society for Computer Simulation International, 2017, pp. 1:1--1:12.
[34]
K. Ljungkvist and M. Kronbichler, Multigrid for Matrix-Free Finite Element Computations on Graphics Processors, Tech. Rep. 2017-006, Department of Information Technology, Uppsala University, Uppsala, Sweden, 2017.
[35]
J. Loffeld and J. Hittinger, On the arithmetic intensity of high-order finite-volume discretizations for hyperbolic systems of conservation laws, Internat. J. High Performance Comput. Appl., 33 (2019), pp. 25--52.
[36]
D. A. May, J. Brown, and L. L. Pourhiet, A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow, Comput. Methods Appl. Mech. Engrg., 290 (2015), pp. 496--523.
[37]
D. A. May, P. Sanan, K. Rupp, M. G. Knepley, and B. F. Smith, Extreme-scale multigrid components within PETSc, in Proceedings of the Platform for Advanced Scientific Computing Conference, PASC '16, New York, NY, 2016, ACM, pp. 5:1--5:12.
[38]
L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483--493.
[39]
G. Strang, Variational crimes in the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz, ed., Elsevier, New York, NY, 1972, pp. 689--710.
[40]
B. van Rietbergen, H. Weinans, R. Huiskes, and B. Polman, Computational strategies for iterative solutions of large FEM applications employing voxel data, Internat. J. Numer. Methods Engrg., 39 (1996), pp. 2743--2767.
[41]
M. Zlámal, Curved elements in the finite element method. I, SIAM J. Numer. Anal., 10 (1973), pp. 229--240.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 41, Issue 6
2019
733 pages
ISSN:1064-8275
DOI:10.1137/sjoce3.41.6
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2019

Author Tags

  1. surrogate numerical methods
  2. finite element methods
  3. matrix-free
  4. a priori analysis
  5. low order
  6. geometric multigrid

Author Tags

  1. 65D05
  2. 65M60
  3. 65N30
  4. 65Y05
  5. 65Y20

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media