[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Arnold--Winther Mixed Finite Elements for Stokes Eigenvalue Problems

Published: 01 January 2018 Publication History

Abstract

This paper is devoted to studying the Arnold--Winther mixed finite element method for two-dimensional Stokes eigenvalue problems using the stress-velocity formulation. A priori error estimates for the eigenvalue and eigenfunction errors are presented. To improve the approximation for both eigenvalues and eigenfunctions, we propose a local postprocessing. With the help of the local postprocessing, we derive a reliable a posteriori error estimator which is shown to be empirically efficient. We confirm numerically the proven higher order convergence of the postprocessed eigenvalues for convex domains with smooth eigenfunctions. On adaptively refined meshes we obtain numerically optimal higher orders of convergence of the postprocessed eigenvalues even on nonconvex domains.

References

[1]
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 2000, https://doi.org/10.1002/9781118032824.
[2]
M. G. Armentano and V. Moreno, A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem, J. Comput. Appl. Math., 269 (2014), pp. 132--149, https://doi.org/10.1016/j.cam.2014.03.027.
[3]
D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math., 92 (2002), pp. 401--419, https://doi.org/10.1007/s002110100348.
[4]
I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis. Volume II: Finite Element Methods. Part 1, North-Holland, Amsterdam, 1991, pp. 641--787.
[5]
P. E. Bjørstad and B. P. Tjøstheim, High precision solutions of two fourth order eigenvalue problems, Computing, 63 (1999), pp. 97--107, https://doi.org/10.1007/s006070050053.
[6]
D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer., 19 (2010), pp. 1--120, https://doi.org/10.1017/S0962492910000012.
[7]
S. C. Brenner, P. Monk, and J. Sun, $C^0$ interior penalty Galerkin method for biharmonic eigenvalue problems, in Spectral and High Order Methods for Partial Differential Equations---ICOSAHOM 2014, Lect. Notes Comput. Sci. Eng. 106, Springer, Cham, 2015, pp. 3--15.
[8]
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), pp. 129--151.
[9]
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer-Verlag, New York, 1991, https://doi.org/10.1007/978-1-4612-3172-1.
[10]
C. Carstensen, A unifying theory of a posteriori finite element error control, Numer. Math., 100 (2005), pp. 617--637, https://doi.org/10.1007/s00211-004-0577-y.
[11]
C. Carstensen and J. Gedicke, Robust residual-based a posteriori Arnold-Winther mixed finite element analysis in elasticity, Comput. Methods Appl. Mech. Engrg., 300 (2016), pp. 245--264, https://doi.org/10.1016/j.cma.2015.10.001.
[12]
C. Carstensen, J. Gedicke, and E.-J. Park, Numerical experiments for the Arnold--Winther mixed finite elements for the Stokes problem, SIAM J. Sci. Comput., 34 (2012), pp. A2267--A2287, https://doi.org/10.1137/100802906.
[13]
W. Chen and Q. Lin, Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method, Appl. Math., 51 (2006), pp. 73--88, https://doi.org/10.1007/s10492-006-0006-x.
[14]
W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106--1124, https://doi.org/10.1137/0733054.
[15]
J. Han, Z. Zhang, and Y. Yang, A new adaptive mixed finite element method based on residual type a posterior error estimates for the Stokes eigenvalue problem, Numer. Methods Partial Differential Equations, 31 (2015), pp. 31--53, https://doi.org/10.1002/num.21891.
[16]
P. Huang, Lower and upper bounds of Stokes eigenvalue problem based on stabilized finite element methods, Calcolo, 52 (2015), pp. 109--121, https://doi.org/10.1007/s10092-014-0110-3.
[17]
P. Huang, Y. He, and X. Feng, Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem, Math. Probl. Eng., 2011 (2011), 745908, https://doi.org/10.1155/2011/745908.
[18]
O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), pp. 2374--2399, https://doi.org/10.1137/S0036142902405217.
[19]
R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex polygon, J. Funct. Anal., 21 (1976), pp. 397--431.
[20]
R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998, https://doi.org/10.1137/1.9780898719628.
[21]
H. Liu, W. Gong, S. Wang, and N. Yan, Superconvergence and a posteriori error estimates for the Stokes eigenvalue problems, BIT, 53 (2013), pp. 665--687, https://doi.org/10.1007/s10543-013-0422-8.
[22]
C. Lovadina, M. Lyly, and R. Stenberg, A posteriori estimates for the Stokes eigenvalue problem, Numer. Methods Partial Differential Equations, 25 (2009), pp. 244--257, https://doi.org/10.1002/num.20342.
[23]
C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp., 75 (2006), pp. 1659--1674, https://doi.org/10.1090/S0025-5718-06-01872-2.
[24]
S. Meddahi, D. Mora, and R. Rodríguez, A finite element analysis of a pseudostress formulation for the Stokes eigenvalue problem, IMA J. Numer. Anal., 35 (2015), pp. 749--766, https://doi.org/10.1093/imanum/dru006.
[25]
B. Mercier, J. Osborn, J. Rappaz, and P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods, Math. Comp., 36 (1981), pp. 427--453, https://doi.org/10.2307/2007651.
[26]
L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483--493, https://doi.org/10.2307/2008497.
[27]
R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math., 53 (1988), pp. 513--538, https://doi.org/10.1007/BF01397550.
[28]
R. Stenberg, Some new families of finite elements for the Stokes equations, Numer. Math., 56 (1989), pp. 827--838, https://doi.org/10.1007/BF01405291.
[29]
J. Sun and A. Zhou, Finite Element Methods for Eigenvalue Problems, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2017.
[30]
O. Türk, D. Boffi, and R. Codina, A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems, Comput. Methods Appl. Mech. Engrg., 310 (2016), pp. 886--905, https://doi.org/10.1016/j.cma.2016.08.003.
[31]
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, John Wiley & Sons, Chichester, B. G. Teubner, Stuttgart, 1996.

Cited By

View all
  • (2023)Error estimates for a vorticity-based velocity–stress formulation of the Stokes eigenvalue problemJournal of Computational and Applied Mathematics10.1016/j.cam.2022.114798420:COnline publication date: 1-Mar-2023
  • (2023)Asymptotically exact a posteriori error estimates for the BDM finite element approximation of mixed Laplace eigenvalue problemsBIT10.1007/s10543-023-00976-w63:2Online publication date: 22-May-2023
  • (2023)Interior penalty discontinuous Galerkin methods for the velocity-pressure formulation of the Stokes spectral problemAdvances in Computational Mathematics10.1007/s10444-023-10062-y49:4Online publication date: 27-Jul-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 40, Issue 5
2018
1103 pages
ISSN:1064-8275
DOI:10.1137/sjoce3.40.5
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2018

Author Tags

  1. a priori analysis
  2. a posteriori analysis
  3. Arnold--Winther finite element
  4. mixed finite element
  5. Stokes eigenvalue problem

Author Tags

  1. 65N15
  2. 65N25
  3. 65N30

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Error estimates for a vorticity-based velocity–stress formulation of the Stokes eigenvalue problemJournal of Computational and Applied Mathematics10.1016/j.cam.2022.114798420:COnline publication date: 1-Mar-2023
  • (2023)Asymptotically exact a posteriori error estimates for the BDM finite element approximation of mixed Laplace eigenvalue problemsBIT10.1007/s10543-023-00976-w63:2Online publication date: 22-May-2023
  • (2023)Interior penalty discontinuous Galerkin methods for the velocity-pressure formulation of the Stokes spectral problemAdvances in Computational Mathematics10.1007/s10444-023-10062-y49:4Online publication date: 27-Jul-2023

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media