[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A Systematic Review of Experimental Studies on Data Glyphs

Published: 01 July 2017 Publication History

Abstract

We systematically reviewed 64 user-study papers on data glyphs to help researchers and practitioners gain an informed understanding of tradeoffs in the glyph design space. The glyphs we consider are individual representations of multi-dimensional data points, often meant to be shown in small-multiple settings. Over the past 60 years many different glyph designs were proposed and many of these designs have been subjected to perceptual or comparative evaluations. Yet, a systematic overview of the types of glyphs and design variations tested, the tasks under which they were analyzed, or even the study goals and results does not yet exist. In this paper we provide such an overview by systematically sampling and tabulating the literature on data glyph studies, listing their designs, questions, data, and tasks. In addition we present a concise overview of the types of glyphs and their design characteristics analyzed by researchers in the past, and a synthesis of the study results. Based on our meta analysis of all results we further contribute a set of design implications and a discussion on open research directions.

References

[1]
T. Munzner, Visualization Analysis & Design. Boca Raton, FL, USA : CRC Press, 2015.
[2]
E. Anderson, “A Semigraphical method for the analysis of complex problems, ” Proc. Nat. Academy Sci. United States Amer., vol. 43, no. 10, pp. 923–927, 1957.
[3]
H. Chernoff, “The use of faces to represent points in K-dimensional space graphically,” J. Amer. Statist. Assoc., vol. 68, no. 342, pp. 361–368, 1973.
[4]
J. Siegel, E. Farrell, R. Goldwyn, and H. Friedman, “The surgical implications of physiologic patterns in myocardial infarction shock,” Surgery, vol. 72, no. 1, pp. 126–141, 1972.
[5]
W. Peng, M. Ward, and E. Rundensteiner, “ Clutter reduction in multi-dimensional data visualization using dimension reordering,” in Proc. IEEE Symp. Inform. Vis., 2004, pp. 89– 96.
[6]
J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner, “Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets,” in Proc. IEEE Symp. Inform. Vis., 2003, pp. 105 –112. [Online]. Available: http://dl.acm.org/citation.cfm?id=1947368.1947390
[7]
Y.-H. Chan, C. Correa, and K.-L. Ma, “The generalized sensitivity scatterplot,” IEEE Trans. Vis. Comput. Graphics, vol. 19, no. 10, pp. 1768–1781, Oct. 2013.
[8]
D. W. Cunningham and C. Wallraven, Experimental Design: From User Studies to Psychophysics. Boca Raton, FL, USA : CRC Press, 2012.
[9]
M. O. Ward, “A taxonomy of glyph placement strategies for multidimensional data visualization,” Inform. Vis., vol. 1, no. 3/4, pp. 194–210, Dec. 2002. [Online]. Available: http://dx.doi.org/10.1057/palgrave.ivs.9500025
[10]
M. Ward, “Multivariate data glyphs: Principles and practice,” in Handbook of Data Visualization, Berlin, Germany: Springer, 2008, pp. 179–198. [Online]. Available: https://doi.org/10.1007/978-3-540-33037-0_8
[11]
S. H. Du Toit, A. G. W. Steyn, and R. H. Stumpf, Graphical Exploratory Data Analysis. Berlin, Germany: Springer, 1986.
[12]
J. Pearlman and P. Rheingans, “Visualizing network security events using compound glyphs from a service-oriented perspective,” in Proc. Workshop Vis. Comput. Security, 2007, pp. 131 –146.
[13]
D. H. Chung, R. S. Laramee, J. Kehrer, and H. Hauser, “Glyph-based multi-field visualization,” in Proc. Sci. Vis., 2014, pp. 129– 137.
[14]
R. Borgo, J. Kehrer, D. H. Chung, E. Maguire, R. S. Laramee, H. Hauser, M. Ward, and M. Chen, “Glyph-based visualization: Foundations, design guidelines, techniques and applications,” in Proc. Int. Conf. Eurographics State Art Rep., 2013, pp. 39–63.
[15]
T. Ropinski, S. Oeltze, and B. Preim, “Survey of glyph-based visualization techniques for spatial multivariate medical data,” Comput. Graph., vol. 35, no. 2, pp. 392–401, 2011.
[16]
E. S. Nelson, “The face symbol: Research issues and cartographic potential, ” Cartographica, vol. 42, no. 1, pp. 53 –64, 2007.
[17]
B. Flury and H. Riedwyl, “Graphical representation of multivariate data by means of asymmetrical faces,” J. Amer. Stat. Assoc., vol. 76, no. 376, pp. 757 –765, 1981. [Online]. Available: http://www.jstor.org/stable/2287565
[18]
B. Kabulov, “A method for constructing chernoff faces oriented toward interval estimates of the parameters,” Soviet J. Comput. Syst. Sci., vol. 30, no. 3, pp. 94–97, 1992.
[19]
C. Ware, Information Visualization: Perception for Design. San Mateo, CA, USA: Morgan Kaufmann, 2004.
[20]
N. Andrienko and G. Andrienko, Exploratory Analysis of Spatial and Temporal data. Berlin, Germany: Springer, 2006.
[21]
R. Jacob, “Facial representation of multivariate data,” in Proc. Graph. Representation Multivariate Data, 1978, pp. 143– 168.
[22]
J. Miller, C. Quammen, and M. Fleenor, “ Interactive visualization of intercluster galaxy structures in the horologium-reticulum supercluster,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 5, pp. 1149–1156, Sep. 2006. [Online]. Available: https://doi.org/10.1109/TVCG.2006.155
[23]
L. Micallef, P. Dragicevic, and J. Fekete, “ Assessing the effect of visualizations on Bayesian reasoning through crowdsourcing,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12, pp. 2536–2545, Dec 2012.
[24]
J. Fuchs, F. Fischer, F. Mansmann, E. Bertini, and P. Isenberg, “Evaluation of alternative glyph designs for time series data in a small multiple setting,” in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2013, pp. 3237–3246. [Online]. Available: http://doi.acm.org/10.1145/2470654.2466443
[25]
E. Maguire, P. Rocca-Serra, S.-A. Sansone, J. Davies, and M. Chen, “Taxonomy-based glyph design with a case study on visualizing workflows of biological experiments,” IEEE Trans. Vis. Comput. Graphics, vol. 18, no. 12, pp. 2603–2612, Dec. 2012.
[26]
U. Brandes, B. Nick, B. Rockstroh, and A. Steffen, “Gestaltlines,” in Proc. EuroVis, Eurographics, 2013, pp. 171 –180.
[27]
D. H. S. Chung, P. A. Legg, M. L. Parry, R. Bown, I. W. Griffiths, R. S. Laramee, and M. Chen, “ Glyph sorting: Interactive visualization for multi-dimensional data,” Inform. Vis. , vol. 14, pp. 76–90, 2015.
[28]
H. Levkowitz, “Color icons—Merging color and texture perception for integrated visualization of multiple parameters,” in Proc. IEEE VIS , Oct. 1991, pp. 164–170.
[29]
A. E. Lie, J. Kehrer, and H. Hauser, “Critical design and realization aspects of glyph-based 3D data visualization,” in Proc. 25th Spring Conf. Comput. Graphics, 2009, pp. 19–26. [Online]. Available: http://doi.acm.org/10.1145/1980462.1980470
[30]
M. Chuah and S. Eick, “Information rich glyphs for software management data,” IEEE Comput. Graph. Appl., vol. 18, no. 4, pp. 24–29, Jul. 1998.
[31]
W. Ribarsky, E. Ayers, J. Eble, and S. Mukherjea, “Glyphmaker: Creating customized visualizations of complex data,” Computer, vol. 27, no. 7, pp. 57–64, Jul. 1994.
[32]
C. Dick, R. Burgkart, and R. Westermann, “ Distance visualization for Interactive 3D implant planning,” IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12, pp. 2173– 2182, Dec. 2011.
[33]
A. Klippel, F. Hardisty, R. Li, and C. Weaver, “Colour-enhanced star plot glyphs: Can salient shape characteristics be overcome?” Cartographica, vol. 44, no. 3, pp. 217–231, 2009.
[34]
H. Siirtola, “The Effect of data-relatedness in interactive glyphs,” in Proc. 9th Int. Conf. Inform. Vis., Jul. 2005, pp. 869–876.
[35]
W. Aigner, S. Miksch, B. Thurnher, and S. Biffl, “Planninglines: Novel glyphs for representing temporal uncertainties and their evaluation,” in Proc. 9th Int. Conf. Inform. Vis., Jul. 2005, pp. 457–463.
[36]
J. P. Martin, J. E. Swan, R. J. Moorhead, Z. Liu, and S. Cai, “Results of a user study on 2D hurricane visualization,” Comput. Graph. Forum, vol. 27, no. 3, pp. 991–998, 2008. [Online]. Available: http://dx.doi.org/10.1111/j.1467-8659.2008.01234.x
[37]
D. H. Pilar and C. Ware, “Representing flow patterns by using streamlines with glyphs,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 8, pp. 1331–1341, Aug. 2013.
[38]
B. Yost and C. North, “Single complex glyphs versus multiple simple glyphs,” in Proc. Extended Abstracts Human Factors Comput. Syst., 2005, pp. 1889–1892. [Online]. Available: http://doi.acm.org/10.1145/1056808.1057048
[39]
C. G. Healey and J. T. Enns, “Large datasets at a glance: Combining textures and colors in scientific visualization,” IEEE Trans. Vis. Comput. Graph., vol. 5, no. 2, pp. 145–167, Apr./Jun. 1999.
[40]
Y.-N. Li, D.-J. Li, and K. Zhang, “Metaphoric transfer effect in information visualization using glyphs,” in Proc. 8th Int. Symp. Vis. Inform. Commun. Interaction, 2015, pp. 121–130. [Online]. Available: http://doi.acm.org/10.1145/2801040.2801062
[41]
W.-Y. Chan, H. Qu, and W.-H. Mak, “Visualizing the semantic structure in classical music works,” IEEE Trans. Vis. Comput. Graph., vol. 16, no. 1, pp. 161–173, Jan./Feb. 2010.
[42]
C. M. Wittenbrink, A. T. Pang, and S. K. Lodha, “Glyphs for visualizing uncertainty in vector fields,” IEEE Trans. Vis. Comput. Graph., vol. 2, no. 3, pp. 266–279, Sep. 1996.
[43]
C. Dunne and B. Shneiderman, “Motif simplification: Improving network visualization readability with fan, connector, and clique glyphs,” in Proc. SIGCHI Conf. Human Factors Comput. Syst., 2013, pp. 3247–3256. [Online]. Available: http://doi.acm.org/10.1145/2470654.2466444
[44]
M. Cayli, M. C. Cobanoglu, and S. Balcisoy, “ Glyphlink: An interactive visualization approach for semantic graphs,” J. Vis. Languages Comput., vol. 24, no. 6, pp. 463– 471, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1045926X13000542
[45]
M. Chau, “Visualizing web search results using glyphs: Design and evaluation of a flower metaphor,” ACM Trans. Manag. Inform. Syst., vol. 2, no. 1, pp. 1–27, Mar. 2011. [Online]. Available: http://doi.acm.org/10.1145/1929916.1929918
[46]
N. Siva, A. Chaparro, and E. Palmer, “Evaluation of MILSTD 2525 glyph features in a visual search paradigm,” Proc. Human Factors Ergonomics Soc. Annu. Meet., 2014, pp. 1189–1193. [Online]. Available: http://pro.sagepub.com/content/58/1/1189.abstract
[47]
L. Wilkinson, “An experimental evaluation of multivariate graphical point representations,” in Proc. Conf. Human Factors Comput. Syst., 1982, pp. 202–209. [Online]. Available: http://doi.acm.org/10.1145/800049.801781
[48]
E. J. Casey, “Visual display representation of multidimensional systems: The effect of system structure: And display integrality,” Proc. Human Factors Ergonom. Soc. Annu. Meet., 1987, pp. 112–115. [Online]. Available: http://pro.sagepub.com/content/31/1/112.abstract
[49]
P. M. Jones, C. D. Wickens, and S. J. Deutsch, “ The display of multivariate information: An experimental study of an information integration task,” Human Perform., vol. 3, no. 1, pp. 1 –17, 1990. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1207/s15327043hup0301_1
[50]
D. MacGregor and P. Slovic, “Graphic representation of judgmental information,” Human Comput. Interaction, vol. 2, no. 3, pp. 179–200, 1986. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1207/s15327051hci0203_1
[51]
M. C. Carswell and C. D. Wickens, “Information integration and the object display: An interaction of task demands and display superiority,” Ergonomics, vol. 30, no. 3, pp. 511–527, 1987. [Online]. Available: http://dx.doi.org/10.1080/00140138708969741
[52]
J. E. Mezzich and D. R. L. Worthington, “A comparison of graphical representations of multidimensional psychiatric diagnostic data,” Graph. Representation Multivariate Data, pp. 123 –141, 1978.
[53]
R. J. Petersen, W. W. Banks, and D. I. Gertman, “ Performance-based evaluation of graphic displays for nuclear power plant control rooms,” in Proc. Conf. Human Factors Comput. Syst., 1982, pp. 182–189. [Online]. Available: http://doi.acm.org/10.1145/800049.801778
[54]
D. Albers, M. Correll, and M. Gleicher, “ Task-driven evaluation of aggregation in time series visualization,” in Proc. Conf. Human Factors Comput. Syst., 2014, pp. 551–560. [Online]. Available: http://doi.acm.org/10.1145/2556288.2557200
[55]
P. Goffin, W. Willett, A. Bezerianos, and P. Isenberg, “Exploring the effect of word-scale visualizations on reading behavior,” in Proc. Conf. Human Factors Comput. Syst. Work-In-Progress, 2015, pp. 1827–1832.
[56]
J. Caban, P. Rheingans, and T. Yoo, “An evaluation of visualization techniques to illustrate statistical deformation models,” Comput. Graph. Forum, vol. 30, no. 3, pp. 821–830, 2011.
[57]
I. Borg and T. Staufenbiel, “Performance of snow flakes, suns, and factorial suns in the graphical representation of multivariate data,” Multivariate Behavioral Res., vol. 27, no. 1, pp. 43–55, 1992. [Online]. Available: https://doi.org/10.1207/s15327906mbr2701_4
[58]
J. Fuchs, P. Isenberg, A. Bezerianos, F. Fischer, and E. Bertini, “The influence of contour on similarity perception of star glyphs,” IEEE Trans. Vis. Comput. Graphics, vol. 20, no. 12, pp. 2251–2260, Dec. 2014.
[59]
A. Klippel, F. Hardisty, and C. Weaver, “Star plots: How shape characteristics influence classification tasks,” Cartography Geograph. Inform. Sci., vol. 36, no. 2, pp. 149–163, 2009. [Online]. Available: https://doi.org/10.1559/152304009788188808
[60]
C. Weigle and R. Taylor, “Visualizing intersecting surfaces with nested-surface techniques,” in Proc. IEEE Vis., Oct. 2005, pp. 503 –510.
[61]
R. Jacob and E. Howard, “The face as a data display,” Human Factors, vol. 18, no. 2, pp. 189–200, 1976.
[62]
C. Frisson, S. Dupont, W. Yvart, N. Riche, X. Siebert, and T. Dutoit, “Audiometro: Directing search for sound designers through content-based cues,” in Proc. 9th Audio Mostly: A Conf. Interaction Sound, 2014, pp. 1:1 –1:8. [Online]. Available: http://doi.acm.org/10.1145/2636879.2636880
[63]
Y. Wu and M. Takatsuka, “ Visualizing multivariate networks: A hybrid approach,” in Proc. IEEE Pacific Vis. Symp., Mar. 2008, pp. 223–230.
[64]
M. D. Boulette, B. G. Coury, and N. A. Bezar, “ Classification of multidimensional data under time constraints: Evaluating digital and configural display representations,” Proc. Human Factors Ergonomics Soc. Annu. Meet., vol. 31, no. 1, pp. 116–120, 1987. [Online]. Available: http://pro.sagepub.com/content/31/1/116.abstract
[65]
E. Nelson and P. Gilmartin, “An evaluation of multivariate, quantitative point symbols for maps,” in C. Wood and P. Keller (eds). Cartographic Design: Theoretical Practical Perspectives, Wiley & Sons, London, pp. 191–203, 1996.
[66]
M. D. Lee, R. E. Reilly, and M. E. Butavicius, “An Empirical evaluation of chernoff faces, star glyphs, and spatial visualizations for binary data,” in Proc. Asia-Pacific Symp. Inform. Vis., 2003, pp. 1– 10. [Online]. Available: http://dl.acm.org/citation.cfm?id=857080.857081
[67]
C. Forsell, S. Seipel, and M. Lind, “Surface glyphs for efficient visualization of spatial multivariate data,” Inform. Vis., vol. 5, no. 2, pp. 112–124, 2006. [Online]. Available: http://ivi.sagepub.com/content/5/2/112.abstract
[68]
M. Livingston and J. Decker, “Evaluation of trend localization with multi-variate visualizations,” IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12, pp. 2053–2062, Dec 2011.
[69]
M. A. Livingston and J. W. Decker, “Evaluation of multivariate visualizations: A case study of refinements and user experience,” Proc. SPIE Int. Soc. Opt. Eng., vol. 8294, pp. 82 940G–82 940G–12, 2012. [Online]. Available: http://dx.doi.org/10.1117/12.912192
[70]
P. Saraiya, C. North, and K. Duca, “Comparing benchmark task and insight evaluation methods on timeseries graph visualizations,” in Proc. 3rd BELIV Workshop: BEyond Time Errors: Novel Eval. Methods Inform. Vis., 2010, pp. 55–62. [Online]. Available: http://doi.acm.org/10.1145/2110192.2110201
[71]
C. Forsell, S. Seipel, and M. Lind, “Simple 3D glyphs for spatial multivariate data,” in Proc. IEEE Symp. Inform. Vis., Oct. 2005, pp. 119–124.
[72]
M. A. Livingston, J. Decker, and Z. Ai, “An evaluation of methods for encoding multiple 2D spatial data,” Proc. SPIE, vol. 7868, pp. 78 680C–78 680C–12, 2011. [Online]. Available: http://dx.doi.org/10.1117/12.872576
[73]
H. Chernoff and M. H. Rizvi, “Effect on classification error of random permutations of features in representing multivariate data by faces,” J. Amer. Stat. Assoc., vol. 70, no. 351, pp. 548–554, 1975. [Online]. Available: http://www.jstor.org/stable/2285931
[74]
G. De Soete and W. Do Corte, “On the perceptual salience of features of chernoff faces for representing multivariate data,” Appl. Psychological Meas., vol. 9, no. 3, pp. 275–280, 1985. [Online]. Available: http://apm.sagepub.com/content/9/3/275.abstract
[75]
G. De Soete, “A Perceptual study of the Flury-Riedwyl faces for graphically displaying multivariate data,” Int. J. Man-Mach. Stud., vol. 25, no. 5, pp. 549–555, 1986.
[76]
C. G. Hamner, D. W. Turner, and D. M. Young, “ Comparisons of several graphical methods for representing multivariate data,” Comput. Math. Appl., vol. 13, no. 7, pp. 647–655, 1987.
[77]
D. L. Huff and W. Black, “A multivariate graphic display for regional analysis,” in Graphical Representation of Multivariate Data, Orlando, FL, USA: Academic, 1978, pp. 199–218.
[78]
R. Jacob, “Investigating the Space of Chernoff faces,” Recent Adv. Statist., Academic Press, New York, pp. 449–468, 1983.
[79]
C. J. Morris, D. S. Ebert, and P. L. Rheingans, “ Experimental analysis of the effectiveness of features in chernoff faces,” Proc. SPIE Int. Soc. Opt. Eng., vol. 3905, pp. 12–17, 2000. [Online]. Available: https://doi.org/10.1117/12.384865
[80]
M. Naveh-Benjamin and R. G. Pachella, “The effect of complexity on interpreting “Chernoff” faces,” Human Factors, vol. 24, no. 1, pp. 11 –18, 1982. [Online]. Available: http://hfs.sagepub.com/content/24/1/11.abstract
[81]
E. S. Nelson, D. Dow, C. Lukinbeal, and R. Farley, “Visual search processes and the multivariate point symbol,” Cartographica, vol. 34, no. 4, pp. 19–33, 1997.
[82]
N. Siva, A. Chaparro, D. Nguyen, and E. Palmer, “Visual search efficiency for features in chernoff faces,” J. Vision, vol. 13, no. 9, pp. 689–, 2013. [Online]. Available: http://www.journalofvision.org/content/13/9/689.abstract
[83]
N. Sivagnanasundaram, A. Chaparro, and E. Palmer, “Evaluation of the presence of a face search advantage in chernoff faces,” Proc. Human Factors Ergonomics Soc. Annu. Meet., vol. 57, no. 1, pp. 1610– 1614, 2013. [Online]. Available: http://pro.sagepub.com/content/57/1/1610.abstract
[84]
S. Moriarity, “Communicating financial information through multidimensional graphics,” J. Accounting Res., vol. 17, no. 1, pp. 205–224, 1979. [Online]. Available: http://www.jstor.org/stable/2490314
[85]
D. Stock and C. J. Watson, “Human judgment accuracy, multidimensional graphics, and humans versus models,” J. Account. Res., vol. 22, no. 1, pp. 192 –206, 1984. [Online]. Available: http://www.jstor.org/stable/2490708
[86]
P. C. Saxena and K. Navaneetham, “Comparison of Chernoff-type face and non-graphical methods for clustering multivariate observations,” Comput. Stat. Data Anal., vol. 15, no. 1, pp. 63–79, 1993.
[87]
R. L. Brown, “Methods for the graphic representation of systems simulated data,” Ergonomics, vol. 28, no. 10, pp. 1439 –1454, 1985. [Online]. Available: http://dx.doi.org/10.1080/00140138508963269
[88]
E. Chlan and P. Rheingans, “Multivariate glyphs for multi-object clusters,” in Proc. IEEE Symp. Inform. Vis., Oct. 2005, pp. 141 –148.
[89]
C. D. Shaw, J. A. Hall, C. Blahut, D. S. Ebert, and D. A. Roberts, “Using shape to visualize multivariate data,” in Proc. Workshop New Paradigms Inform. Vis. Manipulation Conjunction 8th ACM Int. Conf. Inform. Knowl. Manag. , 1999, pp. 17–20. [Online]. Available: http://doi.acm.org/10.1145/331770.331777
[90]
D. Feng, Y. Lee, L. Kwock, and R. M. Taylor, II, “Evaluation of glyph-based multivariate scalar volume visualization techniques,” in Proc. 6th Symp. Appl. Perception Graphics Vis., 2009, pp. 61–68. [Online]. Available: http://doi.acm.org/10.1145/1620993.1621006
[91]
T. Jankun-Kelly, Y. Lanka, and J. Swan, “An evaluation of glyph perception for real symmetric traceless tensor properties,” Comput. Graph. Forum, vol. 29, no. 3, pp. 1133–1142, 2010. [Online]. Available: https://doi.org/10.1111/j.1467-8659.2009.01711.x
[92]
C. Zhang, T. Schultz, K. Lawonn, E. Eisemann, and A. Vilanova, “Glyph-based comparative visualization for diffusion tensor fields,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 797–806, Jan. 2016.
[93]
E. Tufte, Beautiful Evidence, Graphics Press, New York, 2006.
[94]
M. Stone, A field guide to digital color. Boca Raton, FL, USA : CRC Press, 2013.
[95]
F. Vogel and G. Wendt, “Zwillingsuntersuchung über die erblichkeit einiger anthropologischer maße und konstitutionsindices,” Z. Menschl. Vererb. Konstitutionslehre, vol. 33, pp. 425–446, 1956.
[96]
D. S. Ebert, R. M. Rohrer, C. D. Shaw, P. Panda, J. M. Kukla, and D. A. Roberts, “Procedural shape generation for multi-dimensional data visualization, ” Comput. Graph., vol. 24, no. 3, pp. 375 –384, 2000.
[97]
K. Rodden, W. Basalaj, D. Sinclair, and K. Wood, “Does organisation by similarity assist image browsing?” in Proc. Conf. Human Factors Comput. Syst., 2001, pp. 190–197. [Online]. Available: http://doi.acm.org/10.1145/365024.365097
[98]
W. Cleveland and R. McGill, “Graphical perception: Theory, experimentation, and application to the development of graphical methods,” J. Am. Statist. Assoc., vol. 79, no. 387, pp. 531–554, 1984.
[99]
J. Sreng, A. Lecuyer, C. Megard, and C. Andriot, “Using visual cues of contact to improve interactive manipulation of virtual objects in industrial assembly/maintenance simulations,” IEEE Trans. Vis. Comput. Graphics, vol. 12, no. 5, pp. 1013–1020, Sep. 2006.
[100]
P. Saraiya, C. North, and K. Duca, “An Insight-based methodology for evaluating bioinformatics visualizations,” IEEE Trans. Vis. Comput. Graphics, vol. 11, no. 4, pp. 443–456, Jul. 2005.
[101]
A. Amirkhanov, B. Fröhler, J. Kastner, E. Gröller, and C. Heinzl, “Inspectr: Multi-modal exploration, visualization, and analysis of spectral data,” Comput. Graph. Forum, vol. 33, no. 3, pp. 91–100, 2014.
[102]
S. Oeltze, W. Freiler, R. Hillert, H. Doleisch, B. Preim, and W. Schubert, “Interactive, graph-based visual analysis of high-dimensional, multi-parameter fluorescence microscopy data in toponomics,” IEEE Trans. Vis. Comput. Graphics , vol. 17, no. 12, pp. 1882–1891, Dec. 2011.
[103]
J. Yang, A. Patro, H. Shiping, N. Mehta, M. Ward, and E. Rundensteiner, “ Value and relation display for interactive exploration of high dimensional datasets,” in Proc. IEEE Symp. Inform. Vis., 2004, pp. 73 –80.

Cited By

View all
  • (2024)Instanced Rendering of Parameterized 3D Glyphs with Adaptive Level-of-Detail using three.jsProceedings of the 29th International ACM Conference on 3D Web Technology10.1145/3665318.3677171(1-11)Online publication date: 25-Sep-2024
  • (2024)Path-Based Design Model for Constructing and Exploring Alternative VisualisationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632331:1(1158-1168)Online publication date: 10-Sep-2024
  • (2024)AdaMotif: Graph Simplification via Adaptive Motif DesignIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632131:1(688-698)Online publication date: 10-Sep-2024
  • Show More Cited By

Index Terms

  1. A Systematic Review of Experimental Studies on Data Glyphs
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image IEEE Transactions on Visualization and Computer Graphics
    IEEE Transactions on Visualization and Computer Graphics  Volume 23, Issue 7
    July 2017
    155 pages

    Publisher

    IEEE Educational Activities Department

    United States

    Publication History

    Published: 01 July 2017

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Instanced Rendering of Parameterized 3D Glyphs with Adaptive Level-of-Detail using three.jsProceedings of the 29th International ACM Conference on 3D Web Technology10.1145/3665318.3677171(1-11)Online publication date: 25-Sep-2024
    • (2024)Path-Based Design Model for Constructing and Exploring Alternative VisualisationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632331:1(1158-1168)Online publication date: 10-Sep-2024
    • (2024)AdaMotif: Graph Simplification via Adaptive Motif DesignIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632131:1(688-698)Online publication date: 10-Sep-2024
    • (2024)FS/DS: A Theoretical Framework for the Dual Analysis of Feature Space and Data SpaceIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.328835630:8(5165-5182)Online publication date: 1-Aug-2024
    • (2024)Visually exploring canonical correlation patterns of high-dimensional industrial control datasets based on multi-sensor fusionJournal of Visualization10.1007/s12650-024-01008-727:5(819-840)Online publication date: 1-Oct-2024
    • (2024)Parallel Chords: an audio-visual analytics design for parallel coordinatesPersonal and Ubiquitous Computing10.1007/s00779-024-01795-828:5(657-676)Online publication date: 1-Oct-2024
    • (2024)Visual analysis of fitness landscapes in architectural design optimizationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03491-340:7(4927-4940)Online publication date: 1-Jul-2024
    • (2022)Promoting Ethical Awareness in Communication Analysis: Investigating Potentials and Limits of Visual Analytics for Intelligence ApplicationsProceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency10.1145/3531146.3533151(877-889)Online publication date: 21-Jun-2022
    • (2022)Effect of Anthropomorphic Glyph Design on the Accuracy of Categorization TasksExtended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491101.3519748(1-7)Online publication date: 27-Apr-2022
    • (2022)Generative Design Inspiration for Glyphs with DiatomsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311479228:1(389-399)Online publication date: 1-Jan-2022
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media