[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Causes for the Formation of Titania Nanotubes During Anodization

Published: 01 January 2015 Publication History

Abstract

Titania nanotube arrays were prepared in the electrolyte containing dimethyl sulphoxide and HF through anodization method and the morphology and composition of the nanotube arrays were characterized through scanning electron microscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The causes for the formation of nanotubes have been discussed according to the experimental results. Nanopores are formed firstly at the early stage of anodization, O<sup>2-</sup> ion needed to oxidize the titanium metal below the pore wall must diffuse inward from both sides of the pore wall. Because of the different diffusion resistances, O<sup>2-</sup> concentrations are different at different positions of the interface between titanium metal and pore wall, leading to different oxide compositions. As a result, the surface of pore wall is mainly composed of high valence oxide TiO<sub>2</sub>, while the middle of pore wall is mainly composed of suboxides, such as Ti<sub>2</sub>O<sub>3</sub> and TiO. The pore wall would crack easily at the middle low strength suboxides due to temperature changes during anodization, which results in the conversion of nanopores into nanotubes. The selective dissolution of suboxides in the electrolyte leads to the formation of gaps between nanotubes.

References

[1]
W. Chanmanee, A. Watcharenwong, C. R. Chenthamarakshan, P. Kajitvichyanukul, N. R. Tacconi, and K. Rajeshwar, “Titania nanotubes from pulse anodization of titanium foils,” Electrochem. Commun., vol. 9, pp. 2145 –2149, 2007.
[2]
S. Yoriya, “Effect of inter-electrode spacing on electrolyte properties and morphologies of anodic TiO2 nanotube array films,” Int. J. Electrochem. Sci. , vol. 7, pp. 9454–9464, 2012.
[3]
J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, “Smooth anodic TiO2 nanotubes,” Angewandte Chemie Int. Edition, vol. 44, pp. 7463– 7465, 2005.
[4]
J. Zhao, X. Wang, T. Sun, and L. Li, “In situ templated synthesis of anatase single-crystal nanotube arrays,” Nanotechnology, vol. 16, pp. 2450–2454, 2005.
[5]
H. Li, J. Wang, K. Huang, G. Sun, and M. Zhou, “ In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method,” Mater. Lett., vol. 65, pp. 1188 –1190, 2011.
[6]
G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Lett., vol. 6, pp. 215–218, 2006.
[7]
J. Zhao, X. Wang, Y. Kang, X. Xu, and Y. Li, “Photoelectrochemical activities of W-doped titania nanotube arrays fabricated by anodization,” Photon. Technol. Lett., vol. 20, pp. 1213 –1215, 2008.
[8]
J. H. Park, S. Kim, and A. J. Bard, “Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting,” Nano Lett., vol. 6, pp. 24–28, 2006.
[9]
S. Lin, D. Li, J. Wu, X. Li, and S. Akbar, “A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays,” Sensors Actuators B: Chemical, vol. 156, pp. 505 –509, 2011.
[10]
H. F. Lu, F. Li, G. Liu, A. G. Chen, D. W. Wang, H. T. Fang, G. Q. Lu, Z. H. Jiang, and H. M. Cheng, “Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors,” Nanotechnology, vol. 19, Article ID: 405504, pp. 1–7, 2008.
[11]
P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: Synthesis and applications,” Angewandte Chemie Int. Edition, vol. 50, pp. 2904–2939, 2011.
[12]
C. Ruan, M. Paulose, O. K. Varghese, and C. A. Grimes, “Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1283–1295, 2006.
[13]
M. S. Aw et al., “A multi-drug delivery system with sequential release using titania nanotube arrays,” Chem. Commun., vol. 48, pp. 3348–3350, 2012.
[14]
G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2011–2075, 2006.
[15]
S. V. Kuchibhatla, A. Karakoti, D. Bera D, and S. Seal, “One dimensional nanostructured materials,” Progress Mater. Sci., vol. 52, pp. 699– 913, 2007.
[16]
H. Li, M. Liu, H. Wang, J. Wu, P. Su, D. Li, and J. Wang, “Formation process of tio2 nanotube arrays prepared by anodic oxidation method,” J. Nanosci. Nanotechnol., vol. 13, pp. 4110–4116, 2013.
[17]
M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, “Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length,” The J. Phys. Chem. B, vol. 110, pp. 16179–16184, 2006.
[18]
S. Mohapatra, M. Misra, V. Mahajan, and K. Raja, “A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water,” J. Catalysis, vol. 246, pp. 362– 369, 2007.
[19]
V. Prida, E. Manova, V. Vega, M. Hernandez-Velez, P. Aranda, K. Pirota, M. Vázquez, and E. Ruiz-Hitzky, “Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays,” J. Magn. Magn. Mater., vol. 316, pp. 110–113, 2007.
[20]
N. Wang, X. Li, Y. Wang, X. Quan, and G. Chen, “Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method,” Chem. Eng. J., vol. 146, pp. 30–35, 2009.
[21]
G. Zhang, H. Huang, Y. Zhang, H. L. Chan, and L. Zhou, “Highly ordered nanoporous TiO2 and its photocatalytic properties,” Electrochem. Commun., vol. 9, pp. 2854 –2858, 2007.
[22]
W. E. Slink and P. B. DeGroot, “Vanadium-titanium oxide catalysts for oxidation of butene to acetic acid,” J. Catalysis, vol. 68, pp. 423–432, 1981.
[23]
J. Fierro, L. Arrua, N. J. Lopez, and G. Kremenic, “Surface properties of Co-precipitated VTiO catalysts and their relation to the selectiveoxidation of isobutene,” Appl. Catalysis, vol. 37, pp. 323–338, 1988.
[24]
I. Georgiadou, N. Spanos, C. Papadopoulou, H. Matralis, C. Kordulis, and A. Lycourghiotis, “Preparation and characterization of various titanias (anatase) used as supports for vanadia-supported catalysts,” Colloids Surfaces A: Physicochem. Eng. Aspects, vol. 98, pp. 155–165, 1995.
[25]
F. Werfel and O. Brümmer, “Corundum structure oxides studied by XPS,” Physica Scripta, vol. 28, pp. 92–96, 1983.
[26]
D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier, and R. Dormoy, “XPS study of thin films of titanium oxysulfides,” Surface Sci., vol. 254, pp. 81–89, 1991.
[27]
E. McCafferty and J. Wightman, “An X-ray photoelectron spectroscopy sputter profile study of the native air-formed oxide film on titanium,” Appl. Surface Sci., vol. 143, pp. 92 –100, 1999.
[28]
T. Tan, S. Wang, S. Bian, X. Li, Y. An, and Z. Liu, “Novel synthesis and electrophoretic response of low density TiO–TiO2–carbon black composite,” Appl Surface Sci., vol. 256, pp. 6932– 6935, 2010.
[29]
R. P. Netterfield, P. Martin, C. Pacey, W. Sainty, D. McKenzie, and G. Auchterlonie, “Ion-assisted deposition of mixed TiO2-SiO2 films,” J. Appl. Phys., vol. 66, pp. 1805– 1809, 1989.
[30]
R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, and F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys., vol. 75, pp. 2945–2951, 1994.
[31]
C. Sleigh, A. Pijpers, A. Jaspers, B. Coussens, and R. J. Meier, “On the determination of atomic charge via ESCA including application to organometallics,” J. Electron Spectroscopy Related Phenomena, vol. 77, pp. 41–57, 1996.
[32]
J. Yao, J. Shao, H. He, and Z. Fan, “Optical and electrical properties of TiOx thin films deposited by electron beam evaporation,” Vacuum, vol. 81, pp. 1023–1028, 2007.
[33]
D. I. Petukhov, A. A. Eliseev, I. V. Kolesnik, K. S. Napolskii, A. V. Lukashin, Y. D. Tretyakov, S. V. Grigoriev, N. V. Grigorieva, and H. Eckerlebe, “Formation mechanism and packing options in tubular anodic titania films,” Microporous Mesoporous Mater., vol. 114, pp. 440–447, 2008.
[34]
J. Zhao, X. Wang, and L. Li, “Electrochemical fabrication of well-ordered titania nanotubes in H3PO4/HF electrolytes, “ Electron. Lett., vol. 41, pp. 771–772, 2005
[35]
J. Speight, 16th ed., Lange's Handbook of Chemistry, Laramie, Wyoming, USA: CD&W Inc, 2004.
[36]
X. Wang, J. Zhao, X. Wang, and J. Zhou, “Influence of mass and heat transfer on morphologies of metal oxide nanochannel arrays prepared by anodization method,” ISRN Nanotechnol., vol. 2011, Article ID: 480970, pp. 1–5, 2011.

Index Terms

  1. Causes for the Formation of Titania Nanotubes During Anodization
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Nanotechnology
      IEEE Transactions on Nanotechnology  Volume 14, Issue 1
      Jan. 2015
      195 pages

      Publisher

      IEEE Press

      Publication History

      Published: 01 January 2015

      Author Tags

      1. semiconductor materials
      2. Electrochemical processes
      3. self-organizing control

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 03 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media