[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Complete Characterization of Generalized Bent and 2<sup>k</sup>-Bent Boolean Functions

Published: 01 July 2017 Publication History

Abstract

In this paper, we investigate properties of generalized bent Boolean functions and <inline-formula><tex-math notation="LaTeX">$2^{k}$</tex-math></inline-formula>-bent (i.e., negabent, octabent, hexadecabent, <italic>et al.</italic>) Boolean functions in a uniform framework. From the Hadamard matrices, Hod&#x17e;i&#x107; and Pasalic presented sufficient conditions for generalized bent functions. Using cyclotomic fields and the decomposition of generalized bent functions, we generalize their results, prove that Hod&#x17e;i&#x107; and Pasalic&#x2019;s conditions of generalized bent functions are not only sufficient but also necessary, and completely characterize generalized bent functions in terms of their component functions. Furthermore, we present a secondary construction of bent functions or semi-bent functions from generalized bent functions. Finally, we give the relations of generalized bent functions and <inline-formula><tex-math notation="LaTeX">$2^{k}$</tex-math></inline-formula>-bent functions, demonstrate that <inline-formula><tex-math notation="LaTeX">$2^{k}$</tex-math></inline-formula>-bent functions are actually a special class of generalized bent functions, and completely characterize <inline-formula><tex-math notation="LaTeX">$2^{k}$</tex-math></inline-formula>-bent functions.

References

[1]
C. Carlet, “Boolean functions for cryptography and error correcting codes,” in Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge, U.K.: Cambridge Univ. Press, Jun. 2010, pp. 257–397.
[2]
C. Carlet, “Vectorial boolean functions for cryptography,” in Boolean Methods and Models, Cambridge, U.K.: Cambridge Univ. Press, 2010, pp. 398–469.
[3]
C. Charnes, M. Rötteler, and T. Beth, “Homogeneous bent functions, invariants, and designs,” Designs, Codes Cryptograph., vol. 26, no. 1, pp. 139–154, Jun. 2002.
[4]
T. W. Cusick and P. Stanica, Cryptographic Boolean Functions and Applications. New York, NY, USA: Elsevier, 2009.
[5]
S. Hodžić, W. Meidl, and E. Pasalic. (May 2016). “Full characterization of generalized bent functions as (semi)-bent spaces, their dual, and the Gray image.” [Online]. Available: https://arxiv.org/abs/1605.05713
[6]
S. Hodžić and E. Pasalic, “Generalized bent functions—Some general construction methods and related necessary and sufficient conditions,” Cryptograph. Commun., vol. 7, no. 4, pp. 469–483, Dec. 2015.
[7]
S. Hodžić and E. Pasalic. (Jan. 2016). “Generalized bent functions— Sufficient conditions and related constructions.” [Online]. Available: https://arxiv.org/abs/1601.08084
[8]
S. Hodžić and E. Pasalic. (Apr. 2016). “Construction methods for generalized bent functions.” [Online]. Available: https://arxiv.org/abs/1601.08084
[9]
T. Martinsen, W. Meidl, and P. Stanica. (Nov. 2015). “Generalized bent functions and their gray images.” [Online]. Available: https://arxiv.org/abs/1511.01438
[10]
T. Martinsen, W. Meidl, S. Mesnager, and P. Stanica. (2016). “Decomposing generalized bent and hyperbent functions.” 491 [Online]. Available: https://arxiv.org/abs/1604.02830
[11]
S. Mesnager, Bent Functions, Fundamentals and Results. New York, NY, USA: Springer-Verlag, 2016.
[12]
J. Olsen, R. Scholtz, and L. Welch, “Bent-function sequences,” IEEE Trans. Inf. Theory, vol. 28, no. 6, pp. 858–864, Nov. 1982.
[13]
M. G. Parker and A. Pott, “On Boolean functions which are bent and negabent,” in Proc. Int. Conf. Sequences, Subsequences, Consequences, Germany, Heidelberg, Jun. 2007, pp. 9–23.
[14]
A. Pott, “Nonlinear functions in abelian groups and relative difference sets,” Discrete Appl. Math., vol. 138, nos. 1–2, pp. 177–193, Mar. 2004.
[15]
O. S. Rothaus, “On ‘bent’ functions,” J. Combinat. Theory, Ser. A., vol. 20, no 3, pp. 300–305, May 1976.
[16]
C. Riera and M. G. Parker, “Generalized bent criteria for Boolean functions,” IEEE Trans. Inf. Theory vol. 52, no. 9, pp. 4142–4159, Jun. 2006.
[17]
K. U. Schmidt, “Quaternary constant-amplitude codes for multicode CDMA,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2007, pp. 2781–2785, [Online]. Available: http://arxiv.org/abs/cs.IT/0611162
[18]
K. U. Schmidt, “Complementary sets, generalized Reed–Muller codes, and power control for OFDM,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 808–814, Feb. 2007.
[19]
B. K. Singh, “Secondary constructions on generalized bent functions,” in Proc. IACR Cryptol. ePrint Arch., 2012, p. 17.
[20]
B. K. Singh, “On cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class,” Inf. Sci. Lett., vol. 2, no. 3, pp. 139–145, Sep. 2013.
[21]
P. Solé and N. N. Tokareva, “Connections between quaternary and binary bent functions,” Prikl. Diskr. Mat., vol. 1, pp. 16–18, 2009. [Online]. Available: http://eprint.iacr.org/ 2009/544
[22]
P. Stǎnicǎ, “On weak and strong $2^{k}$ -bent Boolean functions,” IEEE Trans. Inf. Theory, vol. 62, no. 5, pp. 2827–2835, May 2016.
[23]
P. Stǎnicǎ, T. Martinsen, S. Gangopadhyay, and B. K. Singh, “Bent and generalized bent Boolean functions,” Des. Codes Cryptograph., vol. 69, no. 1, pp. 77–94, Oct. 2013.
[24]
P. Stǎnicǎ, S. Gangopadhyay, A. Chaturvedi, A. K. Gangopadhyay, and S. Maitra, “Investigations on bent and negabent functions via the nega-Hadamard transform,” IEEE Trans. Inf. Theory, vol. 58, no. 6, pp. 4064–4072, Jun. 2012.
[25]
W. Su, A. Pott, and X. Tang, “Characterization of negabent functions and construction of bent-negabent functions with maximum algebraic degree,” IEEE Trans. Inf. Theory, vol. 59, no. 6, pp. 3387–3395, Jun. 2013.
[26]
N. Tokareva, Bent Functions-Results and Applications to Cryptography. New York, NY, USA: Academic, 2015.
[27]
L. C. Washington, “Introduction to cyclotomic fields,” in Graduate Texts in Math, vol. 83, 2nd ed. New York, NY, USA: Springer-Verlag, 1997.

Cited By

View all

Index Terms

  1. Complete Characterization of Generalized Bent and 2k-Bent Boolean Functions
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image IEEE Transactions on Information Theory
          IEEE Transactions on Information Theory  Volume 63, Issue 7
          July 2017
          668 pages

          Publisher

          IEEE Press

          Publication History

          Published: 01 July 2017

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 31 Dec 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2022)A survey on p-ary and generalized bent functionsCryptography and Communications10.1007/s12095-022-00570-x14:4(737-782)Online publication date: 1-Jul-2022
          • (2021)Bent and -Bent functions from spread-like partitionsDesigns, Codes and Cryptography10.1007/s10623-020-00805-z89:1(75-89)Online publication date: 1-Jan-2021
          • (2020)Root-Hadamard transforms and complementary sequencesCryptography and Communications10.1007/s12095-020-00440-412:5(1035-1049)Online publication date: 1-Sep-2020
          • (2020)On generalized hyper-bent functionsCryptography and Communications10.1007/s12095-019-00390-612:3(455-468)Online publication date: 1-May-2020
          • (2020)SEPAR: A New Lightweight Hybrid Encryption Algorithm with a Novel Design Approach for IoTWireless Personal Communications: An International Journal10.1007/s11277-020-07476-y114:3(2283-2314)Online publication date: 1-Oct-2020
          • (2019)Multiple characters transforms and generalized Boolean functionsCryptography and Communications10.1007/s12095-019-00383-511:6(1247-1260)Online publication date: 1-Nov-2019
          • (2019)Generalized bent functions into from the partial spread and the Maiorana-McFarland classCryptography and Communications10.1007/s12095-019-00370-w11:6(1233-1245)Online publication date: 1-Nov-2019
          • (2017)Generalized Plateaued Functions and Admissible (Plateaued) FunctionsIEEE Transactions on Information Theory10.1109/TIT.2017.271580463:10(6139-6148)Online publication date: 12-Sep-2017

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media