[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-319-12087-4_1guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A Note on Semi-bent and Hyper-bent Boolean Functions

Published: 25 October 2014 Publication History

Abstract

Semi-bent and hyper-bent funcitons as two classes of Boolean functions with low Walsh transform, are applied in cryptography and commnunications. This paper considers a new class of semi-bent quadratic Boolean function and a generalization of a new class of hyper-bent Boolean functions. The new class of semi-bent quadratic Boolean function of the form, is simply characterized and enumerated. Then we present the characterization of a generalization of a new class of hyper-bent Boolean functions of the form, where, and .

References

[1]
Berlekamp, E.R.: Algebraic Coding Theory. Revised edn. Aegean Park, Laguna Hills, CA (1984)
[2]
Boztas S and Kumar PV Binary sequences with Gold-like correlation but larger linear span IEEE Trans. Inf. Theory 1994 40 532-537
[3]
Canteaut A, Charpin P, and Kyureghyan G A new class of monomial bent functions Finite Fields Applicat. 2008 14 1 221-241
[4]
Charpin P and Gong G Hyperbent functions, Kloosterman sums and Dickson polynomials IEEE Trans. Inf. Theory 2008 9 54 4230-4238
[5]
Charpin P, Pasalic E, and Tavernier C On bent and semi-bent quadratic Boolean functions IEEE Trans. Inf. Theory 2005 51 12 4286-4298
[6]
Dobbertin H and Leander G Helleseth T, Sarwate D, Song H-Y, and Yang K A survey of some recent results on bent functions Sequences and Their Applications - SETA 2004 2005 Heidelberg Springer 1-29
[7]
Gold R Maximal recursive sequences with 3-valued recursive crosscorrelation functions IEEE Trans. Inf. Theory 1968 14 1 154-156
[8]
Hu H and Feng D On quadratic bent functions in polynomial forms IEEE Trans. Inform. Theory 2007 53 2610-2615
[9]
Helleseth T Ding C, Helleseth T, and Niederreiter H Correlation of m-sequences and related topics Sequences and Their Applications 1998 London Springer 49-66
[10]
Helleseth T and Kumar PV Pless VS and Huffman WC Sequences with low correlation Handbook of Coding Theory 1998 Amsterdam North-Holland 1765-1853
[11]
Lachaud G and Wolfmann J The weights of the orthogonal of the extended quadratic binary Goppa codes IEEE Trans. Inform. Theory 1990 36 686-692
[12]
Lidl, R., Niederreiter, H.: Finite fields. In: Encyclopedia of Mathematics and its Applications, vol. 20. Addison-Wesley, Reading (1983)
[13]
Khoo, K., Gong, G., Stinson, D.R.: A new family of Gold-like sequences. In: Proceedings of IEEE International Symposium on Information Theory, Lausanne, Switzerland, p. 181, June/July 2002
[14]
Khoo K, Gong G, and Stinson DR A new characterization of semi-bent and bent functions on finite fields Des. Codes. Cryptogr. 2006 38 2 279-295
[15]
Matsui M Helleseth T Linear cryptanalysis method for DES cipher Advances in Cryptology - EUROCRYPT ’93 1994 Heidelberg Springer 386-397
[16]
Ma W, Lee M, and Zhang F A new class of bent functions IEICE Trans. Fundam. 2005 E88–A 7 2039-2040
[17]
MacWilliams FJ and Sloane NJA The Theory of Error-Correcting Codes 1977 Amsterdam North-Holland
[18]
Mesnager, S.: A new class of bent boolean functions in polynomial forms. In: Proceedings of International Workshop on Coding and Cryptography, WCC 2009, pp. 5–18 (2009)
[19]
Mesnager S A new class of bent and hyper-bent boolean functions in polynomial forms Des. Codes Crypt. 2011 59 1–3 265-279
[20]
Mesnager S Parker MG A new family of hyper-bent boolean functions in polynomial form Cryptography and Coding 2009 Heidelberg Springer 402-417
[21]
Meier W and Staffelbach O Günther CG Fast correlation attacks on stream ciphers Advances in Cryptology - EUROCRYPT ’88 1988 Heidelberg Springer 301-314
[22]
Patterson N and Wiedemann DH The covering radius of the Reed-Muller code is at least 16276 IEEE Trans. Inf. Theory 1983 29 354-356
[23]
Patterson NJ and Wiedemann DH Correction to The covering radius of the Reed-Muller code is at least 16276 IEEE Trans. Inf. Theory 1990 36 443
[24]
Rothaus OS On bent functions J. Combin. Theory A 1976 20 300-305
[25]
Silverman J Wieferich’s criterion and the abc-conjecture J. Number Theory 1988 30 2 226-237
[26]
Tang, C., Qi, Y., Xu, M., Wang, B., Yang, Y.: A new class of hyper-bent Boolean functions in binomial forms. CoRR, abs/1112.0062v2 (2012)
[27]
Tang C, Qi Y, and Xu M New quadratic bent functions in polynomial forms with coefficients in extension fields IACR Crypt. ePrint Archive 2013 2013 405
[28]
Wieferich A Zum letzten Fermat’Schen Theorem J. Reine Angew. Math. 1909 136 293-302
[29]
Youssef AM and Gong G Pfitzmann B Hyper-bent Functions Advances in Cryptology - EUROCRYPT 2001 2001 Heidelberg Springer 406-419
[30]
Yu NY and Gong G Constructions of quadratic bent functions in polynomial forms IEEE Trans. Inf. Theory 2006 52 7 3291-3299

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Information Security and Cryptology: 9th International Conference, Inscrypt 2013, Guangzhou, China, November 27-30, 2013, Revised Selected Papers
Nov 2013
388 pages
ISBN:978-3-319-12086-7
DOI:10.1007/978-3-319-12087-4
  • Editors:
  • Dongdai Lin,
  • Shouhuai Xu,
  • Moti Yung

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 25 October 2014

Author Tags

  1. Boolean function
  2. Quadratic boolean function
  3. Semi-bent function
  4. Bent function
  5. Hyper-bent function

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media