A novel approach to enhancing biomedical signal recognition via hybrid high-order information bottleneck driven spiking neural networks
References
[1]
A. Achille, S. Soatto, Information dropout: Learning optimal representations through noisy computation, IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (12) (2018) 2897–2905,.
[2]
M. Akay, Biomedical signal processing, Academic Press, 2012.
[3]
A. Al-Saegh, S.A. Dawwd, J.M. Abdul-Jabbar, Deep learning for motor imagery EEG-based classification: A review, Biomedical Signal Processing and Control 63 (2021),.
[4]
A.A. Alemi, I. Fischer, J.V. Dillon, K. Murphy, Deep variational information bottleneck, 2016, arXiv preprint arXiv:1612.00410.
[5]
M. Arozi, W. Caesarendra, M. Ariyanto, M. Munadi, J.D. Setiawan, A. Glowacz, Pattern recognition of single-channel sEMG signal using PCA and ANN method to classify nine hand movements, Symmetry 12 (4) (2020) 541,.
[6]
D. Auge, J. Hille, F. Kreutz, E. Mueller, A. Knoll, End-to-end spiking neural network for speech recognition using resonating input neurons, in: International conference on artificial neural networks, Springer, 2021, pp. 245–256,.
[7]
M. Behnke, M. Buchwald, A. Bykowski, S. Kupiński, L.D. Kaczmarek, Psychophysiology of positive and negative emotions, dataset of 1157 cases and 8 biosignals, Scientific Data 9 (1) (2022) 10,.
[8]
A.N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biological Cybernetics 95 (2006) 1–19,.
[9]
M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S.H. Choday, et al., Loihi: A neuromorphic manycore processor with on-chip learning, Ieee Micro 38 (1) (2018) 82–99,.
[10]
E. Donati, M. Payvand, N. Risi, R. Krause, G. Indiveri, Discrimination of EMG signals using a neuromorphic implementation of a spiking neural network, IEEE Transactions on Biomedical Circuits and Systems 13 (5) (2019) 795–803,.
[11]
D.R. Edla, K. Mangalorekar, G. Dhavalikar, S. Dodia, Classification of EEG data for human mental state analysis using Random Forest Classifier, Procedia Computer Science 132 (2018) 1523–1532,.
[12]
J.K. Eshraghian, M. Ward, E.O. Neftci, X. Wang, G. Lenz, G. Dwivedi, et al., Training spiking neural networks using lessons from deep learning, Proceedings of the IEEE (2023),.
[13]
A. Furui, T. Igaue, T. Tsuji, EMG pattern recognition via Bayesian inference with scale mixture-based stochastic generative models, Expert Systems with Applications 185 (2021),.
[14]
Z. Gao, W. Dang, X. Wang, X. Hong, L. Hou, K. Ma, et al., Complex networks and deep learning for EEG signal analysis, Cognitive Neurodynamics 15 (3) (2021) 369–388,.
[15]
S. Ghosh-Dastidar, H. Adeli, Spiking neural networks, International Journal of Neural Systems 19 (04) (2009) 295–308,.
[16]
Y. Guo, Y. Chen, L. Zhang, X. Liu, Y. Wang, X. Huang, et al., IM-loss: information maximization loss for spiking neural networks, Advances in Neural Information Processing Systems 35 (2022) 156–166.
[17]
R.M. Hecht, E. Noor, G. Dobry, Y. Zigel, A. Bar-Hillel, N. Tishby, Effective model representation by information bottleneck principle, IEEE Transactions on Audio, Speech, and Language Processing 21 (8) (2013) 1755–1759,.
[18]
C.J. James, C.W. Hesse, Independent component analysis for biomedical signals, Physiological Measurement 26 (1) (2004) R15,.
[19]
D.P. Kingma, M. Welling, Auto-encoding variational bayes, 2013, arXiv preprint arXiv:1312.6114.
[20]
A. Kolchinsky, B.D. Tracey, D.H. Wolpert, Nonlinear information bottleneck, Entropy 21 (12) (2019) 1181,.
[21]
K. Kumarasinghe, N. Kasabov, D. Taylor, Brain-inspired spiking neural networks for decoding and understanding muscle activity and kinematics from electroencephalography signals during hand movements, Scientific Reports 11 (1) (2021) 2486,.
[22]
O.-W. Kwon, K. Chan, J. Hao, T.-W. Lee, Emotion recognition by speech signals, in: Interspeech, Citeseer, 2003, pp. 125–128,.
[23]
Q. Liu, Y. Liu, C. Zhang, Z. Ruan, W. Meng, Y. Cai, et al., sEMG-based dynamic muscle fatigue classification using SVM with improved whale optimization algorithm, IEEE Internet of Things Journal 8 (23) (2021) 16835–16844,.
[24]
S.R. Livingstone, F.A. Russo, The ryerson audio-visual database of emotional speech and song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English, PLoS One 13 (5) (2018),.
[25]
Y. Luo, Q. Fu, J. Xie, Y. Qin, G. Wu, J. Liu, et al., EEG-based emotion classification using spiking neural networks, IEEE Access 8 (2020) 46007–46016,.
[26]
X. Luo, H. Qu, Y. Wang, Z. Yi, J. Zhang, M. Zhang, Supervised learning in multilayer spiking neural networks with spike temporal error backpropagation, IEEE Transactions on Neural Networks and Learning Systems 34 (12) (2023) 10141–10153,.
[27]
Y. Ma, E. Donati, B. Chen, P. Ren, N. Zheng, G. Indiveri, Neuromorphic implementation of a recurrent neural network for EMG classification, in: 2020 2nd IEEE international conference on artificial intelligence circuits and systems, AICAS, IEEE, 2020, pp. 69–73,.
[28]
M. Malik, M.K. Malik, K. Mehmood, I. Makhdoom, Automatic speech recognition: a survey, Multimedia Tools and Applications 80 (2021) 9411–9457,.
[29]
P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, et al., A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345 (6197) (2014) 668–673,.
[30]
M. Montazerin, F. Naderkhani, A. Mohammadi, Spiking neural networks for sEMG-based hand gesture recognition, in: 2023 IEEE international conference on systems, man, and cybernetics, SMC, IEEE, 2023, pp. 4859–4864,.
[31]
J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, et al., Towards artificial general intelligence with hybrid Tianjic chip architecture, Nature 572 (7767) (2019) 106–111,.
[32]
F. Peng, C. Chen, X. Zhang, X. Wang, C. Wang, L. Wang, sEMG-based gesture recognition by rotation forest-based extreme learning machine, in: 2021 IEEE international conference on real-time computing and robotics, RCAR, 2021, pp. 1122–1127,.
[33]
S. Pizzolato, L. Tagliapietra, M. Cognolato, M. Reggiani, H. Müller, M. Atzori, Comparison of six electromyography acquisition setups on hand movement classification tasks, PLoS One 12 (10) (2017),.
[34]
J. Qi, G. Jiang, G. Li, Y. Sun, B. Tao, Surface EMG hand gesture recognition system based on PCA and GRNN, Neural Computing and Applications 32 (2020) 6343–6351,.
[35]
R.M. Rangayyan, S. Krishnan, Biomedical signal analysis, John Wiley & Sons, 2024,.
[36]
N. Rathi, K. Roy, DIET-SNN: A low-latency spiking neural network with direct input encoding and leakage and threshold optimization, IEEE Transactions on Neural Networks and Learning Systems 34 (6) (2023) 3174–3182,.
[37]
S. Saranya, S. Poonguzhali, S. Karunakaran, Gaussian mixture model based clustering of manual muscle testing grades using surface electromyogram signals, Physical and Engineering Sciences in Medicine 43 (2020) 837–847,.
[38]
M. Sha’Abani, N. Fuad, N. Jamal, M. Ismail, kNN and SVM classification for EEG: a review, in: InECCE2019: proceedings of the 5th international conference on electrical, control & computer engineering, kuantan, pahang, Malaysia, 29th July 2019, Springer, 2020, pp. 555–565,.
[39]
A. Shaban, S.S. Bezugam, M. Suri, Neuromorphic recurrent spiking neural networks for emg gesture classification and low power implementation on loihi, in: 2023 IEEE international symposium on circuits and systems, ISCAS, IEEE, 2023, pp. 1–5,.
[40]
C. Shen, Z. Pei, W. Chen, J. Wang, X. Wu, J. Chen, Lower limb activity recognition based on sEMG using stacked weighted random forest, IEEE Transactions on Neural Systems and Rehabilitation Engineering 32 (2024) 166–177,.
[41]
R. Shwartz-Ziv, N. Tishby, Opening the black box of deep neural networks via information, 2017, arXiv preprint arXiv:1703.00810.
[42]
Z. Song, English speech recognition based on deep learning with multiple features, Computing 102 (3) (2020) 663–682,.
[43]
Y. Su, F. Jelinek, S. Khudanpur, Large-scale random forest language models for speech recognition, in: Interspeech, Citeseer, 2007, pp. 598–601,.
[44]
A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L.P. Maguire, T.M. McGinnity, A review of learning in biologically plausible spiking neural networks, Neural Networks 122 (2020) 253–272,.
[45]
C. Tan, M. Šarlija, N. Kasabov, NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns, Neurocomputing 434 (2021) 137–148,.
[46]
A. Tavanaei, M. Ghodrati, S.R. Kheradpisheh, T. Masquelier, A. Maida, Deep learning in spiking neural networks, Neural Networks 111 (2019) 47–63,.
[47]
N. Tishby, F.C. Pereira, W. Bialek, The information bottleneck method, arXiv preprint physics/0004057 (2000).
[48]
M. Vera, P. Piantanida, L.R. Vega, The role of the information bottleneck in representation learning, in: 2018 IEEE international symposium on information theory, ISIT, IEEE, 2018, pp. 1580–1584,.
[49]
K. Wang, X. Chen, L. Wu, X. Zhang, X. Chen, Z.J. Wang, High-density surface EMG denoising using independent vector analysis, IEEE Transactions on Neural Systems and Rehabilitation Engineering 28 (6) (2020) 1271–1281,.
[50]
J. Wu, Y. Huang, M. Gao, Z. Gao, J. Zhao, J. Shi, et al., Exponential information bottleneck theory against intra-attribute variations for pedestrian attribute recognition, IEEE Transactions on Information Forensics and Security 18 (2023) 5623–5635,.
[51]
J. Wu, E. Yılmaz, M. Zhang, H. Li, K.C. Tan, Deep spiking neural networks for large vocabulary automatic speech recognition, Frontiers in Neuroscience 14 (2020),.
[52]
Z. Wu, H. Zhang, Y. Lin, G. Li, M. Wang, Y. Tang, LIAF-Net: Leaky integrate and analog fire network for lightweight and efficient spatiotemporal information processing, IEEE Transactions on Neural Networks and Learning Systems 33 (11) (2022) 6249–6262,.
[53]
Y. Xie, P. Wang, W. Chen, W. Wang, L. Liu, A neural-based approach to hand gesture recognition with HD-sEMG, in: 2022 41st Chinese control conference, CCC, IEEE, 2022, pp. 3144–3149,.
[54]
Z. Yan, J. Zhou, W.-F. Wong, EEG classification with spiking neural network: Smaller, better, more energy efficient, Smart Health 24 (2022),.
[55]
X. Yang, H. Yan, A. Zhang, P. Xu, S.H. Pan, M.I. Vai, et al., Emotion recognition based on multimodal physiological signals using spiking feed-forward neural networks, Biomedical Signal Processing and Control 91 (2024),.
[56]
M. Yao, G. Zhao, H. Zhang, Y. Hu, L. Deng, Y. Tian, et al., Attention spiking neural networks, IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (8) (2023) 9393–9410,.
[57]
D.S.K. Yogender Narayan, Dr., G. Vivek Ahlawat, Pattern recognition of sEMG signals using DWT based feature and SVM classifier, International Journal of Advanced Science and Technology 29 (2020) 2243–2256.
[58]
Q. Yu, S. Song, C. Ma, L. Pan, K.C. Tan, Synaptic learning with augmented spikes, IEEE Transactions on Neural Networks and Learning Systems 33 (3) (2022) 1134–1146,.
[59]
A. Zhang, Y. Han, Y. Niu, Y. Gao, Z. Chen, K. Zhao, Self-evolutionary neuron model for fast-response spiking neural networks, IEEE Transactions on Cognitive and Developmental Systems 14 (4) (2021) 1766–1777,.
[60]
T. Zhang, S. Jia, X. Cheng, B. Xu, Tuning convolutional spiking neural network with biologically plausible reward propagation, IEEE Transactions on Neural Networks and Learning Systems 33 (12) (2022) 7621–7631,.
[61]
A. Zhang, X. Li, Y. Gao, Y. Niu, Event-driven intrinsic plasticity for spiking convolutional neural networks, IEEE Transactions on Neural Networks and Learning Systems 33 (5) (2022) 1986–1995,.
[62]
A. Zhang, Y. Niu, Y. Gao, J. Wu, Z. Gao, Second-order information bottleneck based spiking neural networks for sEMG recognition, Information Sciences 585 (2022) 543–558,.
[63]
A. Zhang, J. Shi, J. Wu, Y. Zhou, W. Yu, Low latency and sparse computing spiking neural networks with self-driven adaptive threshold plasticity, IEEE Transactions on Neural Networks and Learning Systems (2023),.
[64]
S. Zhao, J. Yang, J. Wang, C. Fang, T. Liu, S. Zhang, et al., A 0.99-to-4.38 uJ/class event-driven hybrid neural network processor for full-spectrum neural signal analyses, IEEE Transactions on Biomedical Circuits and Systems 17 (3) (2023) 598–609,.
Index Terms
- A novel approach to enhancing biomedical signal recognition via hybrid high-order information bottleneck driven spiking neural networks
Index terms have been assigned to the content through auto-classification.
Recommendations
Supervised learning in spiking neural networks with noise-threshold
With a similar capability of processing spikes as biological neural systems, networks of spiking neurons are expected to achieve a performance similar to that of living brains. Despite the achievement of spiking neuron based applications, most of them ...
A spiking neuron as information bottleneck
Neurons receive thousands of presynaptic input spike trains while emitting a single output spike train. This drastic dimensionality reduction suggests considering a neuron as a bottleneck for information transmission. Extending recent results, we ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Elsevier Ltd.
Publisher
Elsevier Science Ltd.
United Kingdom
Publication History
Published: 20 February 2025
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025