[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

An integrated architecture for future studies in data processing for smart cities

Published: 01 July 2017 Publication History

Abstract

Data processing for Smart Cities become more challenging, facing with different handling steps: data collection from different heterogeneous sources, processing sometimes in real-time and then delivered to high level services or applications used in Smart Cities. Applications used for intelligent transportation systems, crowd management, water resources management, noise and air pollution management, require different data processing techniques. The main subject of this paper is to propose an architecture for data processing in Smart Cities. The architecture is oriented on the flow of data from the source to the end user. We describe seven steps of data processing: collection of data from heterogeneous sources, data normalization, data brokering, data storage, data analysis, data visualization and decision support systems. We consider two case studies on crowd management in smart cities and on Intelligent Transportation Systems (ITS) and we provide experimental highlights.

References

[1]
V. Albino, U. Berardi, R.M. Dangelico, Smart cities: Definitions, dimensions, performance, and initiatives, J. Urban Technol., 22 (2015) 3-21.
[2]
A. Whitmore, A. Agarwal, L. Da Xu, The internet of thingsa survey of topics and trends, Inf. Syst. Front., 17 (2015) 261-274.
[3]
J.M. Batalla, P. Krawiec, Conception of id layer performance at the network level for internet of things, Pers. Ubiquit. Comput., 18 (2014) 465-480.
[4]
J.M. Batalla, M. Gajewski, W. Latoszek, P. Krawiec, C.X. Mavromoustakis, G. Mastorakis, Id-based service-oriented communications for unified access to iot, Comput. Electr. Eng., 52 (2016) 98-113.
[5]
A. Gandomi, M. Haider, Beyond the hype: big data concepts, methods, and analytics, Int. J. Inf. Manag., 35 (2015) 137-144.
[6]
C.S. Raghavendra, K.M. Sivalingam, T. Znati, Wireless Sensor Networks, Springer, 2006.
[7]
H. Ma, D. Zhao, P. Yuan, Opportunities in mobile crowd sensing, Commun. Mag. IEEE, 52 (2014) 29-35.
[8]
G.P. Hancke, G.P. Hancke, The role of advanced sensing in smart cities, Sensors, 13 (2012) 393-425.
[9]
K. Su, J. Li, H. Fu, Smart city and the applications, IEEE, 2011.
[10]
G.K. Still, University of Warwick, 2000.
[11]
H. Du, Z. Yu, F. Yi, Z. Wang, Q. Han, B. Guo, Group mobility classification and structure recognition using mobile devices, 2016.
[12]
D. Kumar, H. Wu, Y. Lu, S. Krishnaswamy, M. Palaniswami, Understanding urban mobility via taxi trip clustering, 2016.
[13]
M.S. Grewal, L.R. Weill, A.P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, John Wiley & Sons, 2007.
[14]
Y. Chon, S. Kim, S. Lee, D. Kim, Y. Kim, H. Cha, Sensing WiFi packets in the air, 2014.
[15]
M. Dash, K.K. Koo, S.P. Krishnaswamy, Y. Jin, A. Shi-Nash, Visualize peoples mobility - both individually and collectively - using mobile phone cellular data, 2016.
[16]
A.J. Ruiz-Ruiz, H. Blunck, T.S. Prentow, A. Stisen, M.B. Kjaergaard, Analysis methods for extracting knowledge from large-scale wifi monitoring to inform building facility planning, IEEE, 2014.
[17]
L. Vu, K. Nahrstedt, S. Retika, I. Gupta, Joint bluetooth/wifi scanning framework for characterizing and leveraging people movement in university campus, ACM, 2010.
[18]
M. Zhou, Z. Tian, K. Xu, X. Yu, X. Hong, H. Wu, Scanme: location tracking system in large-scale campus wi-fi environment using unlabeled mobility map, Expert Syst. Appl., 41 (2014) 3429-3443.
[19]
B. Bonne, A. Barzan, P. Quax, W. Lamotte, Wifipi: Involuntary tracking of visitors at mass events, IEEE, 2013.
[20]
C.D. C. Chilipirea, M. v. Steen, Filters for wi-fi generated crowd movement data, IEEE, 2015.
[21]
Y. Wang, J. Yang, H. Liu, Y. Chen, M. Gruteser, R.P. Martin, Measuring human queues using wifi signals, ACM, 2013.
[22]
L. Schauer, M. Werner, P. Marcus, Estimating crowd densities and pedestrian flows using wi-fi and bluetooth, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2014.
[23]
K. Han, E. Graham, D. Vassallo, D. Estrin, Enhancing motivation in a mobile participatory sensing project through gaming, IEEE, 2011.
[24]
H. Aly, A. Basalamah, M. Youssef, Map++: a crowd-sensing system for automatic map semantics identification, IEEE, 2014.
[25]
M. Faulkner, M. Olson, R. Chandy, J. Krause, K.M. Chandy, A. Krause, The next big one: detecting earthquakes and other rare events from community-based sensors, IEEE, 2011.
[26]
M.-R. Ra, B. Liu, T.F. La Porta, R. Govindan, Medusa: a programming framework for crowd-sensing applications, ACM, 2012.
[27]
I. Carreras, D. Miorandi, A. Tamilin, E.R. Ssebaggala, N. Conci, Matador: mobile task detector for context-aware crowd-sensing campaigns, IEEE, 2013.
[28]
P.P. Jayaraman, C. Perera, D. Georgakopoulos, A. Zaslavsky, Efficient opportunistic sensing using mobile collaborative platform mosden, IEEE, 2013.
[29]
T. Yan, M. Marzilli, R. Holmes, D. Ganesan, M. Corner, mcrowd: a platform for mobile crowdsourcing, ACM, 2009.
[30]
H. Vtj, T. Vainio, E. Sirkkunen, K. Salo, Crowdsourced news reporting: supporting news content creation with mobile phones, ACM, 2011.
[31]
J.M. Batalla, Advanced multimedia service provisioning based on efficient interoperability of adaptive streaming protocol and high efficient video coding, J. Real-Time Image Process., 12 (2016) 443-454.
[32]
T. Xie, X. Qin, Scheduling security-critical real-time applications on clusters, Comput. IEEE Trans., 55 (2006) 864-879.
[33]
J.P. Erickson, G. Coombe, J.H. Anderson, Soft real-time scheduling in google earth, IEEE, 2012.
[34]
B. Sprunt, L. Sha, J. Lehoczky, Aperiodic task scheduling for hard-real-time systems, Real-Time Syst., 1 (1989) 27-60.
[35]
C. Dobre, G. Suciu, C. Chilipirea, C. Gosman, Mobility beyond individualism: an integrated platform for intelligent transportation systems of tomorrow, 2014.
[36]
Y. Kryftis, G. Mastorakis, C.X. Mavromoustakis, J.M. Batalla, E. Pallis, G. Kormentzas, Efficient entertainment services provision over a novel network architecture, IEEE Wireless Commun., 23 (2016) 14-21.
[37]
J.M. Batalla, M. Kantor, C.X. Mavromoustakis, G. Skourletopoulos, G. Mastorakis, A novel methodology for efficient throughput evaluation in virtualized routers, IEEE, 2015.
[38]
C. Barbieru, F. Pop, Soft real-time Hadoop scheduler for big data processing in smart cities, IEEE, 2016.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Microprocessors & Microsystems
Microprocessors & Microsystems  Volume 52, Issue C
July 2017
556 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 July 2017

Author Tags

  1. Architecture
  2. Big data
  3. Crowd dynamics
  4. Crowd sensing
  5. Data processing
  6. Intelligent transportation systems

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Role of IoT technologies in big data management systemsPervasive and Mobile Computing10.1016/j.pmcj.2024.101905100:COnline publication date: 1-May-2024
  • (2024)Experts and intelligent systems for smart homes’ Transformation to Sustainable Smart CitiesExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.122380238:PFOnline publication date: 15-Mar-2024
  • (2024)Advanced informatic technologies for intelligent constructionEngineering Applications of Artificial Intelligence10.1016/j.engappai.2024.109104137:PAOnline publication date: 1-Nov-2024
  • (2022)A comprehensive and systematic literature review on the big data management techniques in the internet of thingsWireless Networks10.1007/s11276-022-03177-529:3(1085-1144)Online publication date: 15-Nov-2022
  • (2022)A survey of blockchain applications in sustainable and smart citiesCluster Computing10.1007/s10586-022-03625-z25:6(3915-3936)Online publication date: 29-May-2022
  • (2019)Systematic Review of the Literature on Big Data in the Transportation DomainBig Data Research10.1016/j.bdr.2019.03.00117:C(35-44)Online publication date: 1-Sep-2019
  • (2018)A Systematic Review for Smart City Data AnalyticsACM Computing Surveys10.1145/323956651:5(1-41)Online publication date: 4-Dec-2018
  • (2018)BarcelonaNowCompanion Proceedings of the The Web Conference 201810.1145/3184558.3186983(219-222)Online publication date: 23-Apr-2018
  • (2017)OCPP security - Neural network for detecting malicious trafficProceedings of the International Conference on Research in Adaptive and Convergent Systems10.1145/3129676.3129693(190-195)Online publication date: 20-Sep-2017

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media