[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction

Published: 01 September 2023 Publication History

Abstract

This paper introduces a sharp-interface approach to simulating fluid-structure interaction (FSI) involving flexible bodies described by general nonlinear material models and across a broad range of mass density ratios. This new flexible-body immersed Lagrangian-Eulerian (ILE) scheme extends our prior work on integrating partitioned and immersed approaches to rigid-body FSI. Our numerical approach incorporates the geometrical and domain solution flexibility of the immersed boundary (IB) method with an accuracy comparable to body-fitted approaches that sharply resolve flows and stresses up to the fluid-structure interface. Unlike many IB methods, our ILE formulation uses distinct momentum equations for the fluid and solid subregions with a Dirichlet-Neumann coupling strategy that connects fluid and solid subproblems through simple interface conditions. As in earlier work, we use approximate Lagrange multiplier forces to treat the kinematic interface conditions along the fluid-structure interface. This penalty approach simplifies the linear solvers needed by our formulation by introducing two representations of the fluid-structure interface, one that moves with the fluid and another that moves with the structure, that are connected by stiff springs. This approach also enables the use of multi-rate time stepping, which allows us to use different time step sizes for the fluid and structure subproblems. Our fluid solver relies on an immersed interface method (IIM) for discrete surfaces to impose stress jump conditions along complex interfaces while enabling the use of fast structured-grid solvers for the incompressible Navier-Stokes equations. The dynamics of the volumetric structural mesh are determined using a standard finite element approach to large-deformation nonlinear elasticity via a nearly incompressible solid mechanics formulation. This formulation also readily accommodates compressible structures with a constant total volume, and it can handle fully compressible solid structures for cases in which at least part of the solid boundary does not contact the incompressible fluid. Selected grid convergence studies demonstrate second-order convergence in volume conservation and in the pointwise discrepancies between corresponding positions of the two interface representations as well as between first and second-order convergence in the structural displacements. The time stepping scheme is also demonstrated to yield second-order convergence. To assess and validate the robustness and accuracy of the new algorithm, comparisons are made with computational and experimental FSI benchmarks. Test cases include both smooth and sharp geometries in various flow conditions. We also demonstrate the capabilities of this methodology by applying it to model the transport and capture of a geometrically realistic, deformable blood clot in an inferior vena cava filter.

Highlights

This paper introduces a sharp-interface fluid-flexible structure interaction approach for general nonlinear material models.
We incorporate the domain solution flexibility of immersed methods with an accuracy comparable to body-fitted methods.
The partitioned formulation allows for various mass density ratios and the use of multi-rate time-stepping.
We demonstrate the application of this method to the transport and capture of a blood clot in an inferior vena cava filter.
Our approach can be viewed as a distributed Lagrange multipliers scheme with interfacial (rather than volumetric) coupling.

References

[1]
F. Nobile, L. Formaggia, A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 7 (2) (1999) 105–132.
[2]
C. Farhat, P. Geuzaine, C. Grandmont, The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids, J. Comput. Phys. 174 (2) (2001) 669–694.
[3]
J.A. Cottrell, T.J. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley & Sons, 2009.
[4]
C. Degand, C. Farhat, A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. Struct. 80 (3–4) (2002) 305–316.
[5]
E. Luke, E. Collins, E. Blades, A fast mesh deformation method using explicit interpolation, J. Comput. Phys. 231 (2) (2012) 586–601.
[6]
C.S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10 (2) (1972) 252–271.
[7]
C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25 (3) (1977) 220–252.
[8]
C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[9]
B.E. Griffith, N.A. Patankar, Immersed methods for fluid–structure interaction, Annu. Rev. Fluid Mech. 52 (2020) 421–448.
[10]
R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239–261.
[11]
F. Sotiropoulos, X. Yang, Immersed boundary methods for simulating fluid–structure interaction, Prog. Aerosp. Sci. 65 (2014) 1–21.
[12]
E.M. Kolahdouz, A.P. Bhalla, L.N. Scotten, B.A. Craven, B.E. Griffith, A sharp interface Lagrangian-Eulerian method for rigid-body fluid–structure interaction, J. Comput. Phys. 443 (2021).
[13]
D.M. McQueen, C.S. Peskin, A three-dimensional computer model of the human heart for studying cardiac fluid dynamics, Comput. Graph. 34 (1) (2000) 56–60.
[14]
D.M. McQueen, C.S. Peskin, Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity, in: Mechanics for a New Millennium, Springer, 2001, pp. 429–444.
[15]
B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys. 208 (1) (2005) 75–105.
[16]
B.E. Griffith, R.D. Hornung, D.M. McQueen, C.S. Peskin, An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys. 223 (1) (2007) 10–49.
[17]
L. Zhang, A. Gerstenberger, X. Wang, W.K. Liu, Immersed finite element method, Comput. Methods Appl. Mech. Eng. 193 (21–22) (2004) 2051–2067.
[18]
L.T. Zhang, M. Gay, Immersed finite element method for fluid-structure interactions, J. Fluids Struct. 23 (6) (2007) 839–857.
[19]
D. Boffi, L. Gastaldi, L. Heltai, C.S. Peskin, On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Eng. 197 (25–28) (2008) 2210–2231.
[20]
A.J. Gil, A.A. Carreno, J. Bonet, O. Hassan, The immersed structural potential method for haemodynamic applications, J. Comput. Phys. 229 (22) (2010) 8613–8641.
[21]
A.J. Gil, A.A. Carreno, J. Bonet, O. Hassan, An enhanced immersed structural potential method for fluid–structure interaction, J. Comput. Phys. 250 (2013) 178–205.
[22]
D. Devendran, C.S. Peskin, An immersed boundary energy-based method for incompressible viscoelasticity, J. Comput. Phys. 231 (14) (2012) 4613–4642.
[23]
B.E. Griffith, X.Y. Luo, Hybrid finite difference/finite element version of the immersed boundary method, Int. J. Numer. Methods Biomed. Eng. 33 (11) (2017) e2888.
[24]
Wells, D.; Vadala-Roth, B.; Lee, J.H.; Griffith, B.E. (2021): A nodal immersed finite element-finite difference method. arXiv:2111.09958.
[25]
F.P. Baaijens, A fictitious domain/mortar element method for fluid–structure interaction, Int. J. Numer. Methods Fluids 35 (7) (2001) 743–761.
[26]
C. Hesch, A.J. Gil, A.A. Carreno, J. Bonet, P. Betsch, A mortar approach for fluid–structure interaction problems: immersed strategies for deformable and rigid bodies, Comput. Methods Appl. Mech. Eng. 278 (2014) 853–882.
[27]
M.G.C. Nestola, B. Becsek, H. Zolfaghari, P. Zulian, D. De Marinis, R. Krause, D. Obrist, An immersed boundary method for fluid-structure interaction based on variational transfer, J. Comput. Phys. 398 (2019).
[28]
R. Glowinski, T.-W. Pan, J. Periaux, A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng. 111 (3–4) (1994) 283–303.
[29]
R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow 25 (5) (1999) 755–794.
[30]
R. Van Loon, P.D. Anderson, J. De Hart, F.P. Baaijens, A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves, Int. J. Numer. Methods Fluids 46 (5) (2004) 533–544.
[31]
Z. Yu, A DLM/FD method for fluid/flexible-body interactions, J. Comput. Phys. 207 (1) (2005) 1–27.
[32]
A.P.S. Bhalla, R. Bale, B.E. Griffith, N.A. Patankar, A unified mathematical framework and an adaptive numerical method for fluid–structure interaction with rigid, deforming, and elastic bodies, J. Comput. Phys. 250 (2013) 446–476.
[33]
D. Boffi, N. Cavallini, L. Gastaldi, The finite element immersed boundary method with distributed Lagrange multiplier, SIAM J. Numer. Anal. 53 (6) (2015) 2584–2604.
[34]
C. Kadapa, W. Dettmer, D. Perić, A fictitious domain/distributed Lagrange multiplier based fluid–structure interaction scheme with hierarchical B-spline grids, Comput. Methods Appl. Mech. Eng. 301 (2016) 1–27.
[35]
M.D. de Tullio, G. Pascazio, A moving-least-squares immersed boundary method for simulating the fluid–structure interaction of elastic bodies with arbitrary thickness, J. Comput. Phys. 325 (2016) 201–225.
[36]
M. Vanella, E. Balaras, Direct Lagrangian forcing methods based on moving least squares, in: Immersed Boundary Method, Springer, 2020, pp. 45–79.
[37]
V. Spandan, D. Lohse, M.D. de Tullio, R. Verzicco, A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations, J. Comput. Phys. 375 (2018) 228–239.
[38]
K. Sugiyama, S. Ii, S. Takeuchi, S. Takagi, Y. Matsumoto, A full Eulerian finite difference approach for solving fluid–structure coupling problems, J. Comput. Phys. 230 (3) (2011) 596–627.
[39]
B. Valkov, C.H. Rycroft, K. Kamrin, Eulerian method for multiphase interactions of soft solid bodies in fluids, J. Appl. Mech. 82 (4) (04 2015).
[40]
C.H. Rycroft, C.-H. Wu, Y. Yu, K. Kamrin, Reference map technique for incompressible fluid-structure interaction, J. Fluid Mech. 898 (2020) A9.
[41]
T. Richter, A fully Eulerian formulation for fluid–structure-interaction problems, J. Comput. Phys. 233 (2013) 227–240.
[42]
T. Richter, T. Wick, Finite elements for fluid–structure interaction in ALE and fully Eulerian coordinates, Comput. Methods Appl. Mech. Eng. 199 (41–44) (2010) 2633–2642.
[43]
U.M. Mayer, A. Popp, A. Gerstenberger, W.A. Wall, 3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach, Comput. Mech. 46 (1) (2010) 53–67.
[44]
E. Burman, M.A. Fernández, An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes, Comput. Methods Appl. Mech. Eng. 279 (2014) 497–514.
[45]
S. Zonca, C. Vergara, L. Formaggia, An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach, SIAM J. Sci. Comput. 40 (1) (2018) B59–B84.
[46]
W.A. Wall, A. Gerstenberger, P. Gamnitzer, C. Förster, E. Ramm, Large deformation fluid-structure interaction–advances in ALE methods and new fixed grid approaches, in: Fluid-Structure Interaction, Springer, 2006, pp. 195–232.
[47]
J.W. Banks, W.D. Henshaw, D.W. Schwendeman, Deforming composite grids for solving fluid structure problems, J. Comput. Phys. 231 (9) (2012) 3518–3547.
[48]
S.T. Miller, R. Campbell, C. Elsworth, J. Pitt, D. Boger, An overset grid method for fluid-structure interaction, World J. Mech. 4 (7) (2014).
[49]
D.A. Serino, J.W. Banks, W.D. Henshaw, D.W. Schwendeman, A stable added-mass partitioned (AMP) algorithm for elastic solids and incompressible flow, J. Comput. Phys. 399 (2019).
[50]
R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, A. Von Loebbecke, A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys. 227 (10) (2008) 4825–4852.
[51]
A. Massing, M. Larson, A. Logg, M. Rognes, A Nitsche-based cut finite element method for a fluid-structure interaction problem, Commun. Appl. Math. Comput. Sci. 10 (2) (2015) 97–120.
[52]
B. Schott, C. Ager, W.A. Wall, Monolithic cut finite element–based approaches for fluid-structure interaction, Int. J. Numer. Methods Eng. 119 (8) (2019) 757–796.
[53]
E.M. Kolahdouz, A.P.S. Bhalla, B.A. Craven, B.E. Griffith, An immersed interface method for discrete surfaces, J. Comput. Phys. 400 (2020).
[54]
S. Xu, Z.J. Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys. 216 (2) (2006) 454–493.
[55]
S. Xu, The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow, J. Comput. Phys. 227 (10) (2008) 5045–5071.
[56]
D.-V. Le, B.C. Khoo, J. Peraire, An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries, J. Comput. Phys. 220 (1) (2006) 109–138.
[57]
Z. Tan, D.-V. Le, K.M. Lim, B. Khoo, An immersed interface method for the incompressible Navier–Stokes equations with discontinuous viscosity across the interface, SIAM J. Sci. Comput. 31 (3) (2009) 1798–1819.
[58]
Z. Tan, K. Lim, B. Khoo, A level set-based immersed interface method for solving incompressible viscous flows with the prescribed velocity at the boundary, Int. J. Numer. Methods Fluids 62 (3) (2010) 267–290.
[59]
N. Thekkethil, A. Sharma, Level set function–based immersed interface method and benchmark solutions for fluid flexible-structure interaction, Int. J. Numer. Methods Fluids 91 (3) (2019) 134–157.
[60]
A.T. Layton, Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces, Comput. Fluids 38 (2) (2009) 266–272.
[61]
H. Zhao, J.B. Freund, R.D. Moser, A fixed-mesh method for incompressible flow–structure systems with finite solid deformations, J. Comput. Phys. 227 (6) (2008) 3114–3140.
[62]
S. Turek, J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, in: Fluid-Structure Interaction, Springer, 2006, pp. 371–385.
[63]
U. Küttler, C. Förster, W.A. Wall, A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure Dirichlet fluid domains, Comput. Mech. 38 (4) (2006) 417–429.
[64]
A. Hessenthaler, N. Gaddum, O. Holub, R. Sinkus, O. Röhrle, D. Nordsletten, Experiment for validation of fluid-structure interaction models and algorithms, Int. J. Numer. Methods Biomed. Eng. 33 (9) (2017).
[65]
J. Riley, N. Price, H. Saaid, B. Good, K. Aycock, B. Craven, K. Manning, In vitro clot trapping efficiency of the FDA generic inferior vena cava filter in an anatomical model: an experimental fluid–structure interaction benchmark, Cardiovasc. Eng. Technol. (2021) 1–14.
[66]
C. Förster, W.A. Wall, E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Eng. 196 (7) (2007) 1278–1293.
[67]
J. Liu, R.K. Jaiman, P.S. Gurugubelli, A stable second-order scheme for fluid–structure interaction with strong added-mass effects, J. Comput. Phys. 270 (2014) 687–710.
[68]
Y.L. Young, E.J. Chae, D.T. Akcabay, Hybrid algorithm for modeling of fluid-structure interaction in incompressible, viscous flows, Acta Mech. Sin. 28 (4) (2012) 1030–1041.
[69]
C. Sansour, On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy, Eur. J. Mech. A, Solids 27 (1) (2008) 28–39.
[70]
B. Vadala-Roth, S. Acharya, N.A. Patankar, S. Rossi, B.E. Griffith, Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity, Comput. Methods Appl. Mech. Eng. 365 (2020).
[71]
P. Flory, Thermodynamic relations for high elastic materials, Trans. Faraday Soc. 57 (1961) 829–838.
[72]
D.S. Malkus, T.J. Hughes, Mixed finite element methods-reduced and selective integration techniques: a unification of concepts, Comput. Methods Appl. Mech. Eng. 15 (1) (1978) 63–81.
[73]
B.E. Griffith, An accurate and efficient method for the incompressible Navier–Stokes equations using the projection method as a preconditioner, J. Comput. Phys. 228 (20) (2009) 7565–7595.
[74]
B.E. Griffith, Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, Int. J. Numer. Methods Biomed. Eng. 28 (3) (2012) 317–345.
[75]
B.E. Griffith, On the volume conservation of the immersed boundary method, Commun. Comput. Phys. 12 (2) (2012) 401–432.
[76]
G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (3) (1968) 506–517.
[77]
M. Hua, C.S. Peskin, An analysis of the numerical stability of the immersed boundary method, J. Comput. Phys. 467 (2022).
[78]
: IBAMR: an adaptive and distributed-memory parallel implementation of the immersed boundary method. https://github.com/IBAMR/IBAMR.
[79]
: SAMRAI: structured adaptive mesh refinement application infrastructure. http://www.llnl.gov/CASC/SAMRAI.
[80]
R.D. Hornung, S.R. Kohn, Managing application complexity in the SAMRAI object-oriented framework, Concurr. Comput. 14 (5) (2002) 347–368.
[81]
Balay, S.; Abhyankar, S.; Adams, M.F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.M.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W.D.; Hapla, V.; Isaac, T.; Jolivet, P.; Karpeev, D.; Kaushik, D.; Knepley, M.G.; Kong, F.; Kruger, S.; May, D.A.; McInnes, L.C.; Mills, R.T.; Mitchell, L.; Munson, T.; Roman, J.E.; Rupp, K.; Sanan, P.; Sarich, J.; Smith, B.F.; Zampini, S.; Zhang, H.; Zhang, H.; Zhang, J. (2021): PETSc Web page. https://petsc.org/.
[82]
hypre: High performance preconditioners : http://www.llnl.gov/CASC/hypre.
[83]
R.D. Falgout, U.M. Yang, hypre: a library of high performance preconditioners, in: International Conference on Computational Science, Springer, 2002, pp. 632–641.
[84]
B.S. Kirk, J.W. Peterson, R.H. Stogner, G.F. Carey, libmesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng. Comput. 22 (3) (2006) 237–254.
[85]
X. Wang, L.T. Zhang, Interpolation functions in the immersed boundary and finite element methods, Comput. Mech. 45 (4) (2010) 321–334.
[86]
S. Roy, L. Heltai, F. Costanzo, Benchmarking the immersed finite element method for fluid–structure interaction problems, Comput. Math. Appl. 69 (10) (2015) 1167–1188.
[87]
Z.-Q. Zhang, G. Liu, B.C. Khoo, A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems, Comput. Mech. 51 (2) (2013) 129–150.
[88]
J.H. Lee, B.E. Griffith, On the Lagrangian-Eulerian coupling in the immersed finite element/difference method, J. Comput. Phys. 457 (2022).
[89]
R. Bhardwaj, R. Mittal, Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation, AIAA J. 50 (7) (2012) 1638–1642.
[90]
F.-B. Tian, H. Dai, H. Luo, J.F. Doyle, B. Rousseau, Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems, J. Comput. Phys. 258 (2014) 451–469.
[91]
M. Akbay, C. Schroeder, T. Shinar, Boundary pressure projection for partitioned solution of fluid-structure interaction with incompressible Dirichlet fluid domains, J. Comput. Phys. 425 (2021).
[92]
M.A. Fernández, M. Landajuela, M. Vidrascu, Fully decoupled time-marching schemes for incompressible fluid/thin-walled structure interaction, J. Comput. Phys. 297 (2015) 156–181.
[93]
D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, T.J. Hughes, An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Eng. 284 (2015) 1005–1053.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 488, Issue C
Sep 2023
1360 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 01 September 2023

Author Tags

  1. Fluid-structure interaction
  2. Nonlinear continuum mechanics
  3. Immersed Lagrangian-Eulerian method
  4. Immersed interface method
  5. Inferior vena cava filter

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media