[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Galerkin finite element method for two-dimensional space and time fractional BlochTorrey equation

Published: 01 December 2017 Publication History

Abstract

In this paper, we consider the Galerkin finite element method for the two-dimensional space and time fractional BlochTorrey equation (2D-STFBTE). Utilizing the L21 formula to discretize temporal Caputo derivative, we obtain the local truncation error with O(3) in the temporal direction, where is the order of time fractional derivative. Furthermore, the semi-discrete form for the problem is given and, the stability and convergence of the semi-discrete variational formulation are rigorously proved in L2 norm and fractional norm respectively. Then, we derive a fully discrete scheme for the 2D-STFBTE and investigate its convergence theoretically. Finally, extensive numerical results based on linear piecewise polynomials verify the theoretical results and show the effectiveness of the proposed scheme. Galerkin finite element method for the two-dimensional space and time fractional BlochTorrey equation is proposed.L21 fractional numerical differentiation formula is used to approximate the Caputo fractional derivative in time.Using the L21 formula, a semi-discrete variational formulation is obtained, and the stability and convergence of this scheme are investigated.Convergence of the fully discrete scheme is investigated.Some numerical examples based on linear piecewise polynomials are given to prove the correctness of the theoretical analysis.

References

[1]
W.P. Bu, Y.F. Tang, Y.C. Wu, J.Y. Yang, Finite difference/finite element method for two-dimensional space and time fractional BlochTorrey equations, J. Comput. Phys., 293 (2015) 264-279.
[2]
W.P. Bu, Y.F. Tang, J.Y. Yang, Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys., 276 (2014) 26-38.
[3]
A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015) 424-438.
[4]
W.H. Deng, J.S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations, ESAIM: Math. Model. Numer. Anal., 47 (2013) 1845-1864.
[5]
X. Zhao, Z.Z. Sun, G.E. Karniadakis, Second order approximations for variable order fractional derivatives: algorithms and applications, J. Comput. Phys., 293 (2015) 184-200.
[6]
X. Zhao, Z.Z. Sun, Z.P. Hao, A fourth-order compact ADI scheme for 2D nonlinear space fractional Schrdinger equation, SIAM J. Sci. Comput., 36 (2014) A2865-A2886.
[7]
X. Zhao, Z.Z. Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 230 (2011) 6061-6074.
[8]
X. Zhao, Z.Z. Sun, Compact CrankNicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium, J. Sci. Comput., 62 (2015) 747-771.
[9]
W.P. Bu, A.G. Xiao, W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 72 (2017) 422-441.
[10]
C. Li, T.G. Zhao, W.H. Deng, Y.J. Wu, Orthogonal spline collocation methods for the subdiffusion equation, J. Comput. Appl. Math., 255 (2014) 517-528.
[11]
W.H. Deng, Numerical algorithm for the time fractional FokkerPlanck equation, J. Comput. Phys., 227 (2007) 1510-1522.
[12]
W.H. Deng, Finite element method for the space and time fractional FokkerPlanck equation, SIAM J. Numer. Anal., 47 (2008) 204-226.
[13]
Q. Yu, F. Liu, I. Turner, K. Burrage, Stability and convergence of an implicit numerical method for the space and time fractional BlochTorrey equation, Philos. Trans. R. Soc. A, 371 (2013).
[14]
Q. Yu, F. Liu, I. Turner, K. Burrage, Numerical investigation of three types of space and time fractional BlochTorrey equations in 2D, Cent. Eur. J. Phys., 11 (2013) 646-665.
[15]
Q. Yu, F. Liu, I. Turner, K. Burrage, A computationally effective alternating direction method for the space and time fractional BlochTorrey equation in 3-D, Appl. Math. Comput., 219 (2012) 4082-4095.
[16]
R. Scherer, S.L. Kalla, Y.F. Tang, J.F. Huang, The GrnwaldLetnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011) 902-917.
[17]
I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[18]
F. Huang, F. Liu, The fundamental solution of the spacetime fractional advectiondispersion equation, J. Appl. Math. Comput., 18 (2005) 339-350.
[19]
J. Huang, Y. Tang, L. Vzquez, Convergence analysis of a Block-by-Block method for fractional differential equations, Numer. Math., Theory Methods Appl., 5 (2012) 229-241.
[20]
J. Huang, Y. Tang, L. Vzquez, J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algorithms, 64 (2013) 707-720.
[21]
F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advectiondiffusion equation, Appl. Math. Comput., 191 (2007) 12-20.
[22]
Y.N. Zhang, Z.Z. Sun, H.L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshs, J. Comput. Phys., 265 (2014) 195-210.
[23]
G.H. Gao, Z.Z. Sun, H.W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014) 33-50.
[24]
A.A. Alikhanov, Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation, Appl. Math. Comput., 268 (2015) 12-22.
[25]
C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006) 205-213.
[26]
F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional FokkerPlanck equation, J. Comput. Appl. Math., 166 (2004) 209-219.
[27]
E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228 (2009) 4038-4054.
[28]
A.M. Nakhushev, Fractional Calculus and Its Application, Fizmatlit, Moscow, 2003.
[29]
R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the BlochTorrey equation, J. Magn. Reson., 190 (2008) 255-270.
[30]
R. Magin, X. Feng, D. Baleanu, Solving the fractional order Bloch equation, Concepts Magn. Reson., Part A, 34A (2009) 16-23.
[31]
H. Sun, Z.Z. Sun, G.H. Gao, Some high order difference schemes for the space and time fractional BlochTorrey equations, Appl. Math. Comput., 281 (2016) 356-380.
[32]
K.B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
[33]
H. Zhang, F. Liu, V. Anh, Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217 (2010) 2534-2545.
[34]
Y. Zheng, Z. Zhao, A fully discrete Galerkin method for a nonlinear space-fractional diffusion equation, Math. Probl. Eng., 2011 (2011).
[35]
Z. Zhao, C. Li, Fractional difference/finite element approximations for the timespace fractional telegraph equation, Appl. Math. Comput., 219 (2012) 2975-2988.

Cited By

View all
  • (2021)Fractional SUPG finite element formulation for multi-dimensional fractional advection diffusion equationsComputational Mechanics10.1007/s00466-020-01951-w67:2(601-617)Online publication date: 1-Feb-2021
  • (2020)A Petrov–Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equationsComputational Mechanics10.1007/s00466-020-01853-x66:2(323-350)Online publication date: 16-May-2020
  • (2019)An h-p version of the continuous Petrov-Galerkin finite element method for Riemann-Liouville fractional differential equation with novel test basis functionsNumerical Algorithms10.1007/s11075-018-0559-281:2(529-545)Online publication date: 1-Jun-2019
  1. Galerkin finite element method for two-dimensional space and time fractional BlochTorrey equation

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Journal of Computational Physics
        Journal of Computational Physics  Volume 350, Issue C
        December 2017
        504 pages

        Publisher

        Academic Press Professional, Inc.

        United States

        Publication History

        Published: 01 December 2017

        Author Tags

        1. Convergence
        2. Galerkin finite element method
        3. L21 formula
        4. Space and time fractional BlochTorrey equation
        5. Stability

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 21 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2021)Fractional SUPG finite element formulation for multi-dimensional fractional advection diffusion equationsComputational Mechanics10.1007/s00466-020-01951-w67:2(601-617)Online publication date: 1-Feb-2021
        • (2020)A Petrov–Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equationsComputational Mechanics10.1007/s00466-020-01853-x66:2(323-350)Online publication date: 16-May-2020
        • (2019)An h-p version of the continuous Petrov-Galerkin finite element method for Riemann-Liouville fractional differential equation with novel test basis functionsNumerical Algorithms10.1007/s11075-018-0559-281:2(529-545)Online publication date: 1-Jun-2019

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media