[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Computation of three-dimensional multiphase flow dynamics by Fully-Coupled Immersed Flow (FCIF) solver

Published: 01 December 2017 Publication History

Abstract

This work presents a Fully-Coupled Immersed Flow (FCIF) solver for the three-dimensional simulation of fluidfluid interaction by coupling two distinct flow solvers using an Immersed Boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For illustration, we couple an IB-based unsteady Reynolds Averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver for the application of slug development with turbulent gas and laminar liquid. We perform a series of validations including turbulent/laminar flows over prescribed wavy boundaries and freely-evolving viscous fluids. These confirm the effectiveness and accuracy of both one-way and two-way coupling in the FCIF solver. Finally, we present a simulation example of the evolution from a stratified turbulent/laminar flow through the initiation of a slug that nearly bridges the channel. The results show both the interfacial wave dynamics excited by the turbulent gas forcing and the influence of the liquid on the gas turbulence. These results demonstrate that the FCIF solver effectively captures the essential physics of gasliquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes. Extension of immersed boundary (IB) method to 3D non-mixing fluidfluid coupling.Capture of coupled flow dynamics with disparate properties on stationary grids.A new and simple IB-uRANS solver for high Reynolds number flows.A powerful tool for mechanistic study of turbulent gas/laminar liquid slug flows.

References

[1]
B. Gokcal, Q. Wang, H. Zhang, C. Sarica, Effects of high oil viscosity on oil/gas flow behavior in horizontal pipes, SPE Projects, Facilities Construction, 3 (2008) 1-11.
[2]
P. Janssen, The Interaction of Ocean Waves and Wind, Cambridge University Press, 2004.
[3]
D. Yang, L. Shen, Simulation of viscous flows with undulatory boundaries: part 2. Coupling with other solvers for two-fluid computations, J. Comput. Phys., 230 (2011) 5510-5531.
[4]
M. Fulgosi, D. Lakehal, S. Banerjee, V.D. Angelis, Direct numerical simulation of turbulence in a sheared airwater flow with a deformable interface, J. Fluid Mech., 482 (2003) 319-345.
[5]
G. Lavalle, J. Vila, G. Blanchard, C. Laurent, F. Charru, A numerical reduced model for thin liquid films sheared by a gas flow, J. Comput. Phys., 301 (2015) 119-140.
[6]
B. Campbell, K. Hendrickson, Y. Liu, Nonlinear coupling of interfacial instabilities with resonant wave interactions in horizontal two-fluid plane CouettePoiseuille flows: numerical and physical observations, J. Fluid Mech., 809 (2016) 438-479.
[7]
J. Li, Y. Renardy, M. Renardy, A numerical study of periodic disturbances on two-layer Couette flow, Phys. Fluids, 10 (1998) 3056-3071.
[8]
G. Dietze, C. Ruyer-Quil, Wavy liquid films in interaction with a confined laminar gas flow, J. Fluid Mech., 722 (2013) 348-393.
[9]
D. Adalsteinsson, J. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys., 118 (1995) 269-277.
[10]
J. Sethian, P. Smereka, Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35 (2003) 341-372.
[11]
P. Valluri, P. Spelt, C. Lawrence, G. Hewitt, Numerical simulation of the onset of slug initiation in laminar horizontal channel flow, Int. J. Multiph. Flow, 34 (2008) 206-225.
[12]
S. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100 (1992) 25-37.
[13]
J. Zhang, M. Miksis, S. Bankoff, G. Tryggvason, Nonlinear dynamics of an interface in an inclined channel, Phys. Fluids, 14 (2002) 1877-1885.
[14]
M. Sussman, E. Puckett, A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162 (2000) 301-337.
[15]
A. Maertens, G. Weymouth, Accurate Cartesian-grid simulations of near-body flows at intermediate Reynolds numbers, Comput. Methods Appl. Mech. Eng., 283 (2015) 106-129.
[16]
C. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10 (1972) 252-271.
[17]
Y. Mori, C. Peskin, Implicit second-order immersed boundary methods with boundary mass, Comput. Methods Appl. Mech. Eng., 197 (2008) 2049-2067.
[18]
T. Hou, Z. Shi, An efficient semi-implicit immersed boundary method for the NavierStokes equations, J. Comput. Phys., 227 (2008) 8968-8991.
[19]
M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209 (2005) 448-476.
[20]
S. Su, M. Lai, C. Lin, An immersed boundary technique for simulating complex flows with rigid boundary, Comput. Fluids, 36 (2007) 313-324.
[21]
P. Angot, C. Bruneau, P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81 (1999) 497-520.
[22]
N. Kevlahan, J. Ghidaglia, Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, Eur. J. Mech. B, Fluids, 20 (2001) 333-350.
[23]
D. Clarke, M. Salast, H. Hassan, Euler calculations for multielement airfoils using cartesian grids, AIAA J., 24 (1986) 353-358.
[24]
H. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface cartesian grid method for simulating flows with complex moving boundaries, J. Comput. Phys., 174 (2001) 345-380.
[25]
T. Ye, R. Mittal, H. Udaykumar, W. Shyy, An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. Comput. Phys., 156 (1999) 209-240.
[26]
E. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161 (2000) 35-60.
[27]
Y. Tseng, J. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., 192 (2003) 593-623.
[28]
T. Ikeno, T. Kajishima, Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations, J. Comput. Phys., 226 (2007) 1485-1508.
[29]
L. Ge, F. Sotiropoulos, A numerical method for solving the 3d unsteady incompressible NavierStokes equations in curvilinear domains with complex immersed boundaries, J. Comput. Phys., 225 (2007) 1782-1809.
[30]
R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech., 37 (2005) 239-261.
[31]
F. Sotiropoulos, X. Yang, Immersed boundary methods for simulating fluidstructure interaction, Prog. Aerosp. Sci., 65 (2014) 1-21.
[32]
J. Marquez, J. Trujillo, Overview: slug-flow characterization for heavy-oil fields, in: SPE Latin American and Caribbean Petroleum Engineering Conference, Society of Petroleum Engineers, 2010.
[33]
Y. Zhao, H. Yeung, E. Zorgani, A. Archibong, L. Lao, High viscosity effects on characteristics of oil and gas two-phase flow in horizontal pipes, Chem. Eng. Sci., 95 (2013) 343-352.
[34]
G. Weymouth, D.K.P. Yue, Boundary data immersion method for cartesian-grid simulations of fluidbody interaction problems, J. Comput. Phys., 230 (2011) 6233-6247.
[35]
V. Angelis, P. Lombardi, S. Banerjee, Direct numerical simulation of turbulent flow over a wavy wall, Phys. Fluids, 9 (1997) 2429-2442.
[36]
S. Liu, A. Kermani, L. Shen, D. Yue, Investigation of coupled airwater turbulent boundary layers using direct numerical simulations, Phys. Fluids, 21 (2009).
[37]
G. Iaccarino, R. Verzicco, Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev., 56 (2003) 331-347.
[38]
P.D. Palma, M.D. Tullio, G. Pascazio, M. Napolitano, An immersed-boundary method for compressible viscous flows, Comput. Fluids, 35 (2006) 693-702.
[39]
D. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA J., 26 (1988) 1299-1310.
[40]
D. Wilcox, Turbulence Modeling for CFD, vol. 2, DCW Industries la Canada, CA, 1998.
[41]
R. Falgout, J. Jones, U. Yang, The design and implementation of hypre, a library of parallel high performance preconditioners, in: Numerical Solution of Partial Differential Equations on Parallel Computers, Springer, 2006, pp. 267-294.
[42]
R. Falgout, U. Yang, hypre: a library of high performance preconditioners, in: Computational ScienceICCS 2002, 2002, pp. 632-641.
[43]
R. Falgout, J. Jones, Multigrid on massively parallel architectures, in: Multigrid Methods VI, Springer, 2000, pp. 101-107.
[44]
D. Benney, Long waves on liquid films, Stud. Appl. Math., 45 (1966) 150-155.
[45]
V. Shkadov, Wave flow regimes of a thin layer of viscous fluid subject to gravity, Fluid Dyn., 2 (1967) 29-34.
[46]
C. Fletcher, Computational techniques for fluid dynamics, in: vol. 1: Fundamental and General Techniques, vol. 2: Specific Techniques for Different Flow Categories, Springer-Verlag, Berlin and New York, vol. 1, 418 p., vol. 2, 493 p., vol. 1, 1988.
[47]
P. Causin, J. Gerbeau, F. Nobile, Added-mass effect in the design of partitioned algorithms for fluidstructure problems, Comput. Methods Appl. Mech. Eng., 194 (2005) 4506-4527.
[48]
S. Pirozzoli, M. Bernardini, P. Orlandi, Turbulence statistics in Couette flow at high Reynolds number, J. Fluid Mech., 758 (2014) 327-343.
[49]
V. Avsarkisov, S. Hoyas, M. Oberlack, J. Garca-Galache, Turbulent plane Couette flow at moderately high Reynolds number, J. Fluid Mech., 751 (2014) R1.
[50]
S. Nisizima, A. Yoshizawa, Turbulent channel and Couette flows using an anisotropic k-epsilon model, AIAA J., 25 (1987) 414-420.
[51]
J. Robertson, H. Johnson, Turbulence structure in plane Couette flow, J. Eng. Mech. Div., 96 (1970) 1171-1182.
[52]
Y. Papadimitrakis, R. Street, E. Hsu, The bursting sequence in the turbulent boundary layer over progressive, mechanically generated water waves, J. Fluid Mech., 193 (1988) 303-345.
[53]
J. Komminaho, A. Lundbladh, A. Johansson, Very large structures in plane turbulent Couette flow, J. Fluid Mech., 320 (1996) 259-285.
[54]
P. Sullivan, J. McWilliams, C. Moeng, Simulation of turbulent flow over idealized water waves, J. Fluid Mech., 404 (2000) 47-85.
[55]
L. Nraigh, P. Spelt, T. Zaki, Turbulent flow over a liquid layer revisited: multi-equation turbulence modelling, J. Fluid Mech., 683 (2011) 357-394.
[56]
M. Lighthill, Physical interpretation of the mathematical theory of wave generation by wind, J. Fluid Mech., 14 (1962) 385-398.
[57]
S. Kalliadasis, C. Ruyer-Quil, B. Scheid, M. Velarde, Falling Liquid Films, vol. 176, Springer Science & Business Media, 2011.
[58]
N. Andritsos, L. William, T. Hanratty, Effect of liquid viscosity on the stratified-slug transition in horizontal pipe flow, Int. J. Multiph. Flow, 15 (1989) 877-892.
[59]
L. Nraigh, P. Spelt, O. Matar, T. Zaki, Interfacial instability in turbulent flow over a liquid film in a channel, Int. J. Multiph. Flow, 37 (2011) 812-830.
[60]
L. Jurman, M. McCready, Study of waves on thin liquid films sheared by turbulent gas flows, Phys. Fluids A, Fluid Dyn., 1 (1989) 522-536.
[61]
N. Andritsos, T. Hanratty, Interfacial instabilities for horizontal gasliquid flows in pipelines, Int. J. Multiph. Flow, 13 (1987) 583-603.
[62]
Z. Fan, F. Lusseyran, T. Hanratty, Initiation of slugs in horizontal gasliquid flows, AIChE J., 39 (1993) 1741-1753.
[63]
B. Woods, T. Hanratty, Influence of Froude number on physical processes determining frequency of slugging in horizontal gasliquid flows, Int. J. Multiph. Flow, 25 (1999) 1195-1223.
[64]
P. Lin, T. Hanratty, Effect of pipe diameter on flow patterns for airwater flow in horizontal pipes, Int. J. Multiph. Flow, 13 (1987) 549-563.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 350, Issue C
December 2017
504 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 01 December 2017

Author Tags

  1. Cartesian grid
  2. Immersed boundary (IB)
  3. Long-wave model
  4. Slug generation
  5. Two-phase flow
  6. uRANS

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media