[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate

Published: 01 September 2009 Publication History

Abstract

We present a level set approach to the numerical simulation of the Stefan problem on non-graded adaptive Cartesian grids, i.e. grids for which the size ratio between adjacent cells is not constrained. We use the quadtree data structure to discretize the computational domain and a simple recursive algorithm to automatically generate the adaptive grids. We use the level set method on quadtree of Min and Gibou [C. Min, F. Gibou, A second order accurate level set method on non-graded adaptive Cartesian grids, J. Comput. Phys. 225 (2007) 300-321] to keep track of the moving front between the two phases, and the finite difference scheme of Chen et al. [H. Chen, C. Min, F. Gibou, A supra-convergent finite difference scheme for the poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids, J. Sci. Comput. 31 (2007) 19-60] to solve the heat equations in each of the phases, with Dirichlet boundary conditions imposed on the interface. This scheme produces solutions that converge supralinearly (~1.5) in both the L^1 and the L^~ norms, which we demonstrate numerically for both the temperature field and the interface location. Numerical results also indicate that our method can simulate physical effects such as surface tension and crystalline anisotropy. We also present numerical data to quantify the saving in computational resources.

References

[1]
M.J. Aftosmis, M.J. Berger, J.E. Melton, Adaptive Cartesian mesh generation, in: CRC Handbook of Mesh Generation (Contributed Chapter), 1998.
[2]
V. Alexiades, A.D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere, Washingotn, DC, 1993.
[3]
Alexiades, V., Solomon, A.D. and Wilson, D.G., The formation of a solid nucleus in supercooled liquid. i. J. Non-Equil. Thermody. v13. 281-300.
[4]
A. Almgren, A Fast Adaptive Vortex Method Using Local Corrections, Ph.D. Thesis, University of California, Berkeley, 1991.
[5]
Almgren, A., Bell, J., Colella, P., Howell, L. and Welcome, M., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J. Comput. Phys. v142. 1-46.
[6]
Almgren, A., Buttke, R. and Colella, P., A fast adaptive vortex method in three dimensions. J. Comput. Phys. v113. 177-200.
[7]
Aslam, T., A partial differential equation approach to multidimensional extrapolation. J. Comput. Phys. v193. 349-355.
[8]
Berger, M. and Colella, P., Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. v82. 64-84.
[9]
Berger, M. and Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. v53. 484-512.
[10]
Chen, H., Min, C. and Gibou, F., A supra-convergent finite difference scheme for the poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids. J. Sci. Comput. v31. 19-60.
[11]
Chen, S., Merriman, B., Osher, S. and Smereka, P., A simple level set method for solving Stefan problems. J. Comput. Phys. v135. 8-29.
[12]
Frank, F., . Proc. Royal Soc. A. v201. 586
[13]
Gibou, F. and Fedkiw, R., A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. v202. 577-601.
[14]
Gibou, F., Fedkiw, R., Caflisch, R. and Osher, S., A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. v19. 183-199.
[15]
Gibou, F., Fedkiw, R., Cheng, L.-T. and Kang, M., A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. v176. 205-227.
[16]
Golub, G. and Loan, C., Matrix Computations. 1989. The John Hopkins University Press.
[17]
Johansen, H. and Colella, P., A Cartesian grid embedded boundary method for Poisson's equation on irregular domains. J. Comput. Phys. v147. 60-85.
[18]
Juric, D. and Tryggvason, G., A front tracking method for dendritic solidification. J. Comput. Phys. v123. 127-148.
[19]
Kim, Y.-T., Goldenfeld, N. and Dantzig, J., Computation of dendritic microstructures using a level set method. Phys. Rev. E. v62. 2471-2474.
[20]
J. Langer, in: J. Souletie, J. Vannimenus, R. Stora (Eds.), Lectures in the Theory of Pattern Formation, Chance and Matter, North Holland, Amsterdam, 1987.
[21]
Liu, X.-D., Osher, S. and Chan, T., Weighted essentially non-oscillatory schemes. J. Comput. Phys. v126. 202-212.
[22]
McCorquodale, P., Colella, P., Grote, D. and Vay, J.-L., A node-centered local refinement algorithm for Poisson's equation in complex geometries. J. Comput. Phys. v201. 34-60.
[23]
Meiron, D., Selection of steady-states in the two-dimensional symmetric model of dendritic growth. Phys. Rev. A. v33. 2704
[24]
Meiron, D., Selection of steady states in the two-dimensional symmetric model of dendritic growth. Phys. Rev. A. v33. 2704-2715.
[25]
Min, C. and Gibou, F., A second order accurate projection method for the incompressible Navier-Stokes equation on non-graded adaptive grids. J. Comput. Phys. v219. 912-929.
[26]
Min, C. and Gibou, F., A second order accurate level set method on non-graded adaptive Cartesian grids. J. Comput. Phys. v225. 300-321.
[27]
Min, C., Gibou, F. and Ceniceros, H., A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput. Phys. v218. 123-140.
[28]
Min, C.-H., Local level set method in high dimension and codimension. J. Comput. Phys. v200. 368-382.
[29]
Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces. 2002. Springer-Verlag, New York, NY.
[30]
Osher, S. and Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. v79. 12-49.
[31]
Saad, Y., Iterative Methods for Sparse Linear Systems. 1996. PWS Publishing, New York, NY.
[32]
Samet, H., The Design and Analysis of Spatial Data Structures. 1989. Addison-Wesley, New York.
[33]
Samet, H., . 1990. Image Processing and GIS, 1990.Addison-Wesley, New York.
[34]
Sethian, J. and Strain, J., Crystal growth and dendritic solidification. J. Comput. Phys. v98. 231-253.
[35]
Sethian, J.A., Level Set Methods and Fast Marching Methods. 1999. Cambridge University Press, Cambridge.
[36]
Shu, C.-W. and Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. v77. 439-471.
[37]
Sussman, M., Algrem, A.S., Bell, J.B., Colella, P., Howell, L.H. and Welcome, M.L., An adaptive level set approach for incompressible two-phase flow. J. Comput. Phys. v148. 81-124.
[38]
Sussman, M., Smereka, P. and Osher, S., A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. v114. 146-159.
[39]
Udaykumar, H., Mittal, H. and Shyy, W., Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids. J. Comput. Phys. v153. 535-574.
[40]
Zhao, P. and Heinrich, J., Front tracking finite element method for dendritic solidification. J. Comput. Phys. v173. 765-796.

Cited By

View all
  1. A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Computational Physics
    Journal of Computational Physics  Volume 228, Issue 16
    September, 2009
    460 pages

    Publisher

    Academic Press Professional, Inc.

    United States

    Publication History

    Published: 01 September 2009

    Author Tags

    1. Level set
    2. Non-graded adaptive grid
    3. Quadtree
    4. Stefan problem

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 30 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Machine learning algorithms for three-dimensional mean-curvature computation in the level-set methodJournal of Computational Physics10.1016/j.jcp.2023.111995478:COnline publication date: 1-Apr-2023
    • (2023)Adjoint-based optimization of two-dimensional Stefan problemsJournal of Computational Physics10.1016/j.jcp.2022.111875475:COnline publication date: 15-Feb-2023
    • (2023)Universal AMG Accelerated Embedded Boundary Method Without Small Cell StiffnessJournal of Scientific Computing10.1007/s10915-023-02353-997:2Online publication date: 28-Sep-2023
    • (2022)A sharp numerical method for the simulation of Stefan problems with convective effectsJournal of Computational Physics10.1016/j.jcp.2022.111627471:COnline publication date: 15-Dec-2022
    • (2022)Error-correcting neural networks for semi-Lagrangian advection in the level-set methodJournal of Computational Physics10.1016/j.jcp.2022.111623471:COnline publication date: 15-Dec-2022
    • (2022)A hybrid inference system for improved curvature estimation in the level-set method using machine learningJournal of Computational Physics10.1016/j.jcp.2022.111291463:COnline publication date: 15-Aug-2022
    • (2022)Error-Correcting Neural Networks for Two-Dimensional Curvature Computation in the Level-set MethodJournal of Scientific Computing10.1007/s10915-022-01952-293:1Online publication date: 1-Oct-2022
    • (2020)Adaptive Eulerian framework for boiling and evaporationJournal of Computational Physics10.1016/j.jcp.2019.109030401:COnline publication date: 15-Jan-2020
    • (2018)Poisson equations in irregular domains with Robin boundary conditions — Solver with second-order accurate gradientsJournal of Computational Physics10.1016/j.jcp.2018.03.022365:C(1-6)Online publication date: 15-Jul-2018
    • (2018)The island dynamics model on parallel quadtree gridsJournal of Computational Physics10.1016/j.jcp.2018.01.054361:C(150-166)Online publication date: 15-May-2018
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media