[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A comprehensive geometrical optics application for wave rendering

Published: 01 November 2013 Publication History

Abstract

This paper presents a novel method to model wave effects in a ray tracer which attempts to account for the attenuation, scattering and absorption of light affected by participating media along rays. Inspired by diffraction shaders (DS), we propose an extension of this model to construct a new Bidirectional Reflectance Distribution Function (BRDF) to simultaneously take into consideration the phase and amplitude variation of light. The new method can simulate diffraction effects of a variety of materials, where we introduce the Fresnel factor and a microfacet scattering metric which affect the absorption and geometrical attenuation of photons. Incorporating Wigner Distribution Function (WDF), our method is further extended to model interference effects after multiple bounces by deferring the phase calculation. An acceleration algorithm is also implemented to real-time model diffraction effects of different apertures. We demonstrate the validity of our method by generating wave patterns for diverse scenes.

References

[1]
Ersoy, O., Diffraction Fourier Optics and Imaging. 2007. Wiley, New York.
[2]
J. Stam, Diffraction shaders, in: Proc. of SIGGRAPH '99, 1999, pp. 101-110.
[3]
Y. Sun, F. Fracchia, M. Drew, T. Calvert, Rendering iridescent colors of optical disks, in: EGWR, 2000, pp. 341-352.
[4]
C. Lindsay, E. Agu, Physically-based real-time diffraction using spherical harmonics, in: Advances in Visual Computing, 2006, pp. 505-517.
[5]
Torrance, K. and Sparrow, E.M., Theory of off-specular reflection from roughened surfaces. Journal of the Optical Society of America. v57 i9. 1105-1112.
[6]
Pharr, M. and Humphreys, G., Physically Based Rendering: From Theory to Implementation. 2010. 2nd ed. Morgan Kaufmann, San Francisco.
[7]
NVIDIA, NVIDIA CUDA C Programming Guide, fourth ed., NVIDIA Corporation, 2011.
[8]
J. Blinn, Models of light reflection for computer synthesized pictures, in: Proc. of SIGGRAPH '77, 1977, pp. 192-198.
[9]
Cook, R. and Torrance, K., A reflectance model for computer graphics. ACM Transaction on Graphics. v1 i1. 7-24.
[10]
Phong, B., Illumination for computer generated pictures. Communications of the ACM. v18 i6. 311-317.
[11]
M. Oren, S. Nayar, Generalization of lambert's reflectance model, in: Proc. of SIGGRAPH '94, vol. 28, 1994, pp. 239-246.
[12]
Granier, X. and Heidrich, W., A simple layered RGB BRDF model. Graphical Models. v65 i4. 171-184.
[13]
Beckmann, P. and Spizzichino, A., The Scattering of Electromagnetic Waves from Rough Surfaces. 1963. Macmillan, New York.
[14]
H. Moravec, 3D graphics and the wave theory, in: Proc. of SIGGRAPH '81, 1981, pp. 289-296.
[15]
J. Kajiya, The rendering equations, in: Proc. of SIGGRAPH '86, vol. 20, 1986, pp. 143-150.
[16]
X. He, K. Torrance, F. Sillion, D. Greenberg, A comprehensive physical model for light reflection, in: Proc. of SIGGRAPH '91, 1991, pp. 175-186.
[17]
Nayar, S., Ikeuchi, K. and Kanade, T., Surface reflection:physical and geometrical perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence. v13 i7. 611-634.
[18]
Alonso, M., Wigner functions for nonparaxial arbitrarily polarized electromagnetic wave fields in free space. Journal of Optical Society of America A. v21 i11. 2233-2243.
[19]
Alonso, M., Diffraction of paraxial partially coherent fields by planar obstacles in the Wigner representation. Journal of Optical Society of America A. v26 i7. 1588-1597.
[20]
Oh, S., Kashyap, S., Garg, R., Chandran, S. and Raskar, R., Rendering wave effects with augmented light fields. Computer Graphics Forum. v29 i2. 507-516.
[21]
Cuypers, T., Haber, T., Bekaert, P., Oh, S. and Raskar, R., Reflectance model for diffraction. ACM Transactions on Graphics. v31 i5.
[22]
N. Tsingos, T. Funkhouser, A. Ngan, I. Carlbom, Modeling acoustics in virtual environments using the uniform theory of diffraction, in: Proc. of SIGGRAPH '01, 2001, pp. 545-552.
[23]
Torres, R., Svensson, U. and Kleiner, M., Computation of edge diffraction for more accurate room acoustics auralization. Acoustical Society of America Journal. v109 i2. 600-610.
[24]
Hullin, M., Eisemann, E., Seidel, H. and Lee, S., Physically-based real-time lens flare rendering. ACM Transactions on Graphics. v30 i4.
[25]
D. Greenberg, K. Torrance, P. Shirley, J. Arvo, E. Lafortune, J. A. Ferwerda, B. Walter, B. Trumbore, S. Pattanaik, S.-C. Foo, A framework for realistic image synthesis, in: Proc. of SIGGRAPH '97, 1997, pp. 477-494.
[26]
Gouraud, H., Continuous shading of curved surfaces. IEEE Transaction on Computer C-20. i16. 623-629.
[27]
E. Lafortune, Y. Willems, Using the Modified PHONG BRDF for Physically Based Rendering, Technical report CW197, Dept. Comp. Sci., KU Leuven, 1994.
[28]
Ashikhmin, M. and Shirley, P., An anisotropic PHONG BRDF model. Journal of Graphics Tools. v5 i2. 25-32.
[29]
Ginneken, B., Stavridi, M. and Koenderink, J., Diffuse and specular reflectance from rough surfaces. Applied Optics. v37 i1. 130-139.
[30]
T. Cuypers, R. Horstmeyer, S. Oh, P. Bekaert, R. Raskar, Validity of Wigner distribution function for ray-based imaging, in: Proc. of IEEE International Conference on Computational Photography, 2011, pp. 1-9.
[31]
M. Bastiaans, Wigner distribution in optics, in: M. Testorf, B. Hennelly, J. Ojeda-Castan¿eda, (Eds.), Phase-Space Optics: Fundamenals and Applications, McGraw-Hill, New York, 2009, pp. 1-44.
[32]
Z. Zhang, M. Levoy, Wigner distributions and how they relate to the light field, in: Proc. of IEEE International Conference on Computational Photography, 2009, pp. 1-10.
[33]
Goodman, J., Introduction to Fourier Optics. 2005. 3rd ed. Roberts & Co., Englewood, Colo.
[34]
G. Ward, Measuring and modeling anisotropic reflection, in: Proc. of SIGGRAPH '92, 1992, pp. 265-272.

Cited By

View all
  • (2024)Visual simulation of opal using bond percolation through the weighted Voronoi diagram and the Ewald constructionThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03504-140:7(5005-5016)Online publication date: 1-Jul-2024
  • (2017)Practical Acquisition and Rendering of Diffraction Effects in Surface ReflectanceACM Transactions on Graphics10.1145/3072959.301200136:4(1)Online publication date: 25-Jul-2017
  • (2017)Practical Acquisition and Rendering of Diffraction Effects in Surface ReflectanceACM Transactions on Graphics10.1145/301200136:5(1-16)Online publication date: 25-Jul-2017
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Graphical Models
Graphical Models  Volume 75, Issue 6
November, 2013
92 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 01 November 2013

Author Tags

  1. Acceleration algorithm
  2. Bidirectional reflectance distribution function
  3. Diffraction shaders
  4. Fresnel factor
  5. Microfacet scattering metric
  6. Wigner distribution function

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Visual simulation of opal using bond percolation through the weighted Voronoi diagram and the Ewald constructionThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03504-140:7(5005-5016)Online publication date: 1-Jul-2024
  • (2017)Practical Acquisition and Rendering of Diffraction Effects in Surface ReflectanceACM Transactions on Graphics10.1145/3072959.301200136:4(1)Online publication date: 25-Jul-2017
  • (2017)Practical Acquisition and Rendering of Diffraction Effects in Surface ReflectanceACM Transactions on Graphics10.1145/301200136:5(1-16)Online publication date: 25-Jul-2017
  • (2016)Efficient surface diffraction renderings with Chebyshev approximationsSIGGRAPH ASIA 2016 Technical Briefs10.1145/3005358.3005376(1-4)Online publication date: 28-Nov-2016
  • (2015)Microfacet-based interference simulation for multilayer filmsGraphical Models10.1016/j.gmod.2014.12.00378:C(26-35)Online publication date: 1-Mar-2015
  • (2014)Interactive Diffraction from Biological NanostructuresComputer Graphics Forum10.1111/cgf.1242533:8(177-188)Online publication date: 1-Dec-2014

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media