[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Instability in a generalized multi-species KellerSegel chemotaxis model

Published: 01 November 2016 Publication History

Abstract

In this paper we discuss Turing instability of a generalized KellerSegel chemotaxis model involving n-species and m-chemoattractants. By using combinatorial matrix theory we extend the result on the instability of a single-species and n-chemicals KellerSegel system (Leenheer etal., 2012) to a general (n+m)(n+m) system. A sufficient condition for chemotaxis driven Turing instability of the multi-species model is obtained. Moreover, some examples and numerical simulations are presented to illustrate the theoretical results.

References

[1]
A. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B Biol. Sci., 237 (1952) 37-72.
[2]
R. Satnoianu, M. Menzinger, P. Maini, Turing instabilities in general systems, J. Math. Biol., 41 (2000) 493-512.
[3]
A. Rovinsky, M. Menzinger, Differential flowinstability in dynamical systems without an unstable (activator) subsystem, Phys. Rev. Lett., 72 (1994) 2017-2020.
[4]
T. Hoang, H. Hwang, Turing instability in a general system, Nonlinear Anal., 91 (2013) 93-113.
[5]
Y. Guo, W. Strauss, Instability of periodic BGK equilibria, Comm. Pure Appl. Math., 48 (1995) 861-894.
[6]
E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970) 399-415.
[7]
D. Horstmann, Generalizing the KellerSegel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011) 231-270.
[8]
P. Leenheer, J. Gopalakrishnan, E. Zuhr, Instability in a generalized KellerSegel model, J. Biol. Dyn., 6 (2012) 974-991.
[9]
A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
[10]
M. Negreanu, J. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014) 3761-3781.
[11]
M. Negreanu, J. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations, 258 (2015) 1592-1617.
[12]
J. Tello, M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012) 1413-1425.
[13]
W. Wang, Y. Li, Stabilization in an n-species chemotaxis system with a logistic source, J. Math. Anal. Appl., 432 (2015) 274-288.
[14]
D. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, vol. 840, Springger-Verlag, Berlin, 1981.
[15]
S. Fu, J. Liu, Spatial pattern formation in the KellerSegel model with a logistic source, Comput. Math. Appl., 66 (2013) 403-417.
  1. Instability in a generalized multi-species KellerSegel chemotaxis model

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Computers & Mathematics with Applications
      Computers & Mathematics with Applications  Volume 72, Issue 9
      November 2016
      393 pages

      Publisher

      Pergamon Press, Inc.

      United States

      Publication History

      Published: 01 November 2016

      Author Tags

      1. Chemotaxis
      2. Eigenvalue
      3. KellerSegel model
      4. Pattern formation
      5. Turing instability

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 06 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media