[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Coupling finite element method with meshless finite difference method in thermomechanical problems

Published: 01 November 2016 Publication History

Abstract

This paper focuses on coupling two different computational approaches, namely finite element method (FEM) and meshless finite difference method (MFDM), in one domain. The coupled approach is applied in solving thermomechanical initialboundary value problem where the heat transport in the domain is non-stationary. In this method, the domain is divided into two subdomains for FEM and MFDM, respectively. Contrary to other coupling techniques, the approach presented in this paper is defined in terms of mathematical problem formulation rather than at the approximation level. In the weak form of thermomechanical initialboundary value problem (variational principle), the appropriate additional coupling integrals are defined a-priori. Subsequently, the FEM and the MFDM approximations, which may differ from each other, are provided to the formulation. It is assumed that there exists a very thin layer of material between the subdomains, which is not spatially discretized. The width of this layer may be considered the coupling parameter and it is the same for both, thermal and mechanical parts. Similar approach is applied to essential boundary conditions (e.g. prescribed temperature and displacements). Consequently, the consistent formulation of the mixed problem for the coupled FEMMFDM method is derived. The analysis is illustrated with two- and three-dimensional examples of mechanical and thermomechanical problems.

References

[1]
T. Liszka, J. Orkisz, The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. Struct., 11 (1980) 83-95.
[2]
J. Orkisz, Finite Difference Method (Part III), in: Handbook of Computational Solid Mechanics, Springer-Verlag, 1998.
[3]
S. Milewski, Meshless finite difference method with higher order approximationapplications in mechanics, Arch. Comput. Methods Eng., 19 (2012) 1-49.
[4]
S. Milewski, Selected computational aspects of the meshless finite difference method, Numer. Algorithms, 63 (2013) 107-126.
[5]
T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139 (1996) 3-47.
[6]
T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 37 (1994) 229-256.
[7]
S. Atluri, S. Shen, The Meshless Local Petrov-Galerkin (MLPG) Method, Tech Sciene Press, 2002.
[8]
S. Li, W. Liu, Meshfree and particle methods and their applications, Appl. Mech. Rev., 55 (2002) 1-34.
[9]
G. Liu, M. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, Singapore, 2003.
[10]
R. Gingold, J. Monaghan, Smoothed particle hydrodynamics theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181 (1977) 375-389.
[11]
E. Onate, S. Idelsohn, O. Zienkiewicz, R. Taylor, A finite point method in computational mechanicsapplicatiots to convective transport and fluid flow, Internat. J. Numer. Methods Engrg., 39 (1996) 3839-3866.
[12]
T. Belytschko, J.S. Chen, Meshfree and Particle Methods, Wiley, New York, 2007.
[13]
G. Fasshauer, Meshfree Approximation Methods with MATLAB, in: Interdisciplinary Mathematical Sciences, World Scientific, 2007.
[14]
S. Daxini, J. Prajapati, A review on recent contribution of meshfree methods to structure and fracture mechanics applications, Sci. World J., 2014 (2014) 13.
[15]
P. Lancaster, K. Salkauskas, Surfaces generated by moving least-squares method, Math. Comp., 155 (1981) 141-158.
[16]
P. Lancaster, K. Salkauskas, Curve and Surface Fitting, Academic Press, San Diego, 1990.
[17]
W. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20 (1995) 1081-1106.
[18]
R. Cavoretto, G.E. Fasshauer, M. McCourt, An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels, Numer. Algorithms, 68 (2015) 393-422.
[19]
G. Fasshauer, M. McCourt, Kernel-Based Approximation Methods Using MATLAB, in: Interdisciplinary Mathematical Sciences, World Scientific Publishing, 2015.
[20]
J. Melenk, I. Babuka, The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139 (1996) 289-314.
[21]
I. Babuka, J. Melenk, The partition of unity method, J. Numer. Methods Eng., 40 (1997) 727-758.
[22]
R. Cavoretto, A numerical algorithm for multidimensional modeling of scattered data points, J. Comput. Appl. Math., 34 (2015) 65-80.
[23]
A. Safdari-Vaighani, A. Heryudono, E. Larsson, A radial basis function partition of unity collocation method for convectiondiffusion equations arising in financial applications, J. Sci. Comput., 64 (2015) 341-367.
[24]
R. Cavoretto, A.D. Rossi, A meshless interpolation algorithm using a cell-based searching procedure, Comput. Math. Appl. Comput., 67 (2014) 1024-1038.
[25]
R. Cavoretto, A.D. Rossi, A trivariate interpolation algorithm using a cube-partition searching procedure, SIAM J. Sci. Comput., 37 (2015) A1891-A1908.
[26]
J. Krok, J. Orkisz, Application of the generalized FD approach to stress evaluation in the FE solution, in: Proc. of Int. Conf. on Comp. Mechanics, Tokyo, Japan, Vol. 5, 1986, pp. 3136.
[27]
J. Krok, J. Orkisz, A unified approach to the FE and generalized variational FD methods in nonlinear mechanics, concepts and numerical approach, Discretization Methods Struct. Mech., 1 (1990) 353-362.
[28]
J. Krok, J. Orkisz, M. Stanuszek, A unique FEM/FDM system of discrete analysis of boundary value problems in mechanics, in: Proc. of XI Conf. on Comp. Meth. in Mechanics, Kielce-Cedzyna, Vol. 1, 1993, pp. 466472.
[29]
D. Hegen, Element-free Galerkin methods in combination with finite element approaches, Comput. Methods Appl. Mech. Engrg., 135 (1996) 143-166.
[30]
T. Belytschko, D. Organ, Y. Krongauz, Coupled finite element/element free Galerkin method, Comput. Mech., 17 (1995) 186-195.
[31]
B. Rao, S. Rahman, A coupled meshless-finite element method for fracture analysis of cracks, Int. J. Press. Vessels Pip., 78 (2001) 647-657.
[32]
J. Jakowiec, C. Cicho, Coupling of FEM and EFGM with dynamic decomposition in 2D quasibrittle crack growth analysis, Comput. Assist. Mech. Eng. Sci., 11 (2004) 293-320.
[33]
A. Huerta, S. Hernandez-Menez, Enrichment and coupling of the finite element and meshless methods, Internat. J. Numer. Methods Engrg., 48 (2000) 1615-1630.
[34]
H. Karutz, R. Chudoba, W. Kratzig, Automatic adaptive generation of a coupled finite element/element free Galerkin discretization, Finite Elem. Anal. Des., 18 (2002) 1075-1091.
[35]
Z. Ullah, W. Coombs, C. Augarde, An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems, Comput. Methods Appl. Mech. Engrg., 267 (2013) 111-132.
[36]
J. Krok, J. Orkisz, M. Stanuszek, System NAFDEM for adaptive combined meshless fd and fe analysis of boundary value problems including membrane and cable structures, in: Proc. of CMM-2005 Conf. Comp. Meth. in Mech., Czstochowa, Poland.
[37]
J. Krok, On generalization of ZienkiewiczZhu (ZZ) error estimation using moving weighted least squares method, in: CMM-2005 Conf. Comp. Meth. in Mech., Vol. 1.
[38]
D.E. Keyes, Multiphysics simulations: Challenges and opportunities, Int. J. High Perform. Comput. Appl., 27 (2013) 4-83.
[39]
H. Wendland, Hybrid Methods for Fluid-Structure-Interaction Problems in Aeroelasticity, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.
[40]
J.M. Rodriguez, J.M. Carbonell, J.C. Cante, J. Oliver, The particle finite element method (PFEM) in thermo-mechanical problems, Internat. J. Numer. Methods Engrg., 107 (2016) 733-785.
[41]
J. Jakowiec, S. Milewski, The effective interface approach for coupling of the FE and meshless FD methods and applying essential boundary conditions, Comput. Math. Appl., 70 (2015) 962-979.
[42]
J. Jakowiec, P. Pluciski, J. Pamin, Thermo-mechanical XFEM-type modeling of laminated structure with thin inner layer, Eng. Struct., 100 (2015) 511-521.
[43]
Q. Xiao, M. Dhanasekar, Coupling of FE and EFG using collocation approach, Adv. Eng. Softw., 33 (2002) 507-515.
[44]
D. Lacroix, Ph. Bouillard, Improved sensitivity analysis by a coupled FE-EFG methods, Comput. Struct. (2003) 2431-2439.
[45]
Y. Maday, C. Mavriplis, A. Patera, Application to spectral discretizations, in domain decomposition methods, in: Nonconforming Mortar Element Methods, SIAM, Philadelphia, PA, Los Angeles, CA, 1989, pp. 392-418.
[46]
B. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38 (2000) 989-1012.
[47]
J. Jakowiec, P. Pluciski, A. Stankiewicz, Discontinuous Galerkin method with arbitrary polygonal finite elements, Finite Elem. Anal. Des., 120 (2016) 1-17.
[48]
J. Jakowiec, The hp nonconforming mesh refinement in discontinuous Galerkin finite element method based on Zienkiewicz-Zhu error estimation, Comput. Assist. Methods Eng. Sci. (2016).
[49]
C. Lacour, Y. Maday, Two different approaches for matching nonconforming grids: The mortar element method and the feti method, BIT, 37 (1997) 720-738.
[50]
F. Moro, P. Alotto, M. Guarnieri, A. Stella, Domain decomposition with the mortar cell method, Int. J. Numer. Model., 27 (2014) 461-471.
[51]
A. Toselli, O. Widlund, Domain Decomposition MethodsAlgorithms and Theory, in: Springer Series in Computational Mathematics, Springer Berlin, Heidelberg, 2004.
[52]
O. Zienkiewicz, R. Taylor, J. Zhu, The Finite Element Method: Its Basis and Fundamentals, Elsevier Science, 2005.
[53]
J. Nitsche, ber ein variationsprinzip zur lsung von dirichlet-problemen bei verwendung von teilrumen, die keinen randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1971) 9-15.
[54]
J.D. Sanders, T.A. Laursen, M.A. Puso, A Nitsche embedded mesh method, Comput. Mech., 49 (2011) 243-257.
[55]
B. Rivire, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, in: Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, 2008.
[56]
C.E. Augarde, A.J. Deeks, The use of Timoshenkos exact solution for a cantilever beam in adaptive analysis, Finite Elem. Anal. Des., 44 (2008) 595-601.
[57]
S. Timoshenko, Theory of Elasticity, in: Engineering Societies Monographs, McGraw-Hill, 1951.
[58]
O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992) 1331-1364.
[59]
H.-S. Oh, R. Batra, Application of ZienkiewiczZhus error estimate with superconvergent patch recovery to hierarchical p-refinement, Finite Elem. Anal. Des., 31 (1999) 273-280.
[60]
M. Bergallo, C. Neuman, V. Sonzogni, Composite mesh concept based FEM error estimation and solution improvement, Comput. Methods Appl. Mech. Engrg., 188 (2000) 755-774.
[61]
Y. Miao, Y. Wang, F. Yu, Development of hybrid boundary node method in two-dimensional elasticity, Eng. Anal. Bound. Elem., 29 (2005) 703-712.
[62]
G. Liu, Z. Tu, An adaptive procedure based on background cells for meshless methods, Comput. Methods Appl. Mech. Engrg., 191 (2002) 1923-1943.
[63]
D. Hu, S. Long, K. Liu, G. Li, A modified meshless local PetrovGalerkin method to elasticity problems in computer modeling and simulation, Eng. Anal. Bound. Elem., 30 (2006) 399-404.
  1. Coupling finite element method with meshless finite difference method in thermomechanical problems

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Computers & Mathematics with Applications
      Computers & Mathematics with Applications  Volume 72, Issue 9
      November 2016
      393 pages

      Publisher

      Pergamon Press, Inc.

      United States

      Publication History

      Published: 01 November 2016

      Author Tags

      1. Coupling approach
      2. Finite element method
      3. Meshless finite difference method
      4. Thermomechanics

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 05 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media