[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Evaluation of depth perception in crowded volumes

Published: 18 November 2024 Publication History

Abstract

Depth perception in volumetric visualization plays a crucial role in the understanding and interpretation of volumetric data. Numerous visualization techniques, many of which rely on physically based optical effects, promise to improve depth perception but often do so without considering camera movement or the content of the volume. As a result, the findings from previous studies may not be directly applicable to crowded volumes, where a large number of contained structures disrupts spatial perception. Crowded volumes therefore require special analysis and visualization tools with sparsification capabilities. Interactivity is an integral part of visualizing and exploring crowded volumes, but has received little attention in previous studies. To address this gap, we conducted a study to assess the impact of different rendering techniques on depth perception in crowded volumes, with a particular focus on the effects of camera movement. The results show that depth perception considering camera motion depends much more on the content of the volume than on the chosen visualization technique. Furthermore, we found that conventional non-photorealistic rendering techniques, which have often performed poorly in previous studies, showed comparable performance to modern photorealistic techniques in our study. The source code for the visualization system, survey, and analysis, as well as the data set used in the study and the participants’ responses, have been made publicly available.

Graphical abstract

Display Omitted

Highlights

User study of depth perception in crowded volumes with thousands of instances.
Dynamic depth cues, which are often overlooked, are paramount in crowded volumes.
Camera motion overpowers the perceptual effects of illumination and shading.
Crowded volumes necessitate the use of specialized visibility management tools.
Evaluation data set and participants’ responses have been made publicly available.

References

[1]
Lindemann F., Ropinski T., About the influence of illumination models on image comprehension in direct volume rendering, IEEE Trans Vis Comput Graphics 17 (2011) 1922–1931,. URL: http://ieeexplore.ieee.org/document/6064955/.
[2]
Jönsson D., Sundén E., Ynnerman A., Ropinski T., A survey of volumetric illumination techniques for interactive volume rendering, Comput Graph Forum 33 (2014) 27–51,. URL: http://doi.wiley.com/10.1111/cgf.12252.
[3]
Preim B., Baer A., Cunningham D., Isenberg T., Ropinski T., A survey of perceptually motivated 3D visualization of medical image data, Comput Graph Forum 35 (2016) 501–525,. URL: http://doi.wiley.com/10.1111/cgf.12927.
[4]
Max N., Optical models for direct volume rendering, IEEE Trans Vis Comput Graphics 1 (1995) 99–108,. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=468400.
[5]
Grosset A.V.P., Schott M., Bonneau G.-P., Hansen C., Evaluation of depth of field for depth perception in DVR, in: 2013 IEEE Pacific visualization symposium (Pacificvis), IEEE, 2013, pp. 81–88,.
[6]
Englund R., Ropinski T., Quantitative and qualitative analysis of the perception of semi-transparent structures in direct volume rendering, Comput Graph Forum 37 (2018) 174–187,. URL: http://doi.wiley.com/10.1111/cgf.13320.
[7]
Weissenbock J., Amirkhanov A., Li W., Reh A., Amirkhanov A., Gröller E., Kastner J., Heinzl C., FiberScout: An interactive tool for exploring and analyzing fiber reinforced polymers, in: 2014 IEEE Pacific visualization symposium, IEEE, 2014, pp. 153–160,. URL: http://ieeexplore.ieee.org/document/6787162/.
[8]
Le Muzic M., Mindek P., Sorger J., Autin L., Goodsell D.S., Viola I., Visibility equalizer cutaway visualization of mesoscopic biological models, Comput Graph Forum 35 (2016) 161–170,. URL: https://onlinelibrary.wiley.com/doi/10.1111/cgf.12892.
[9]
Lesar Ž., Alharbi R., Bohak C., Strnad O., Heinzl C., Marolt M., Viola I., Volume conductor: interactive visibility management for crowded volumes, Vis Comput (2023),.
[10]
Englund R., Ropinski T., Evaluating the perception of semi-transparent structures in direct volume rendering techniques, in: SIGGRApH ASIA 2016 symposium on visualization, ACM, New York, NY, USA, 2016, pp. 1–8,.
[11]
Viola I., Gröller E., Hadwiger M., Bühler K., Preim B., Ebert D., Illustrative visualization, in: Lin M., Loscos C. (Eds.), Eurographics 2005 - tutorials, The Eurographics Association, 2005,.
[12]
Levoy M., Display of surfaces from volume data, IEEE Comput Graph Appl 8 (1988) 22–37,.
[13]
Viola I., Gröller E., Smart visibility in visualization, in: Neumann L., Sbert M., Gooch B., Purgathofer W. (Eds.), Computational aesthetics in graphics, visualization and imaging, The Eurographics Association, 2005, pp. 209–216,.
[14]
Bruckner S., Gröller E., Enhancing depth-perception with flexible volumetric halos, IEEE Trans Vis Comput Graphics 13 (2007) 1344–1351,.
[15]
Schott M., Pegoraro V., Hansen C., Boulanger K., Bouatouch K., A directional occlusion shading model for interactive direct volume rendering, Comput Graph Forum 28 (2009) 855–862,. URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01464.x.
[16]
Díaz J., Ropinski T., Navazo I., Gobbetti E., Vázquez P.-P., An experimental study on the effects of shading in 3D perception of volumetric models, Vis Comput 33 (2017) 47–61,.
[17]
Kersten M., Stewart J., Troje N., Ellis R., Enhancing depth perception in translucent volumes, IEEE Trans Vis Comput Graphics 12 (2006) 1117–1124,.
[18]
Ropinski T., Steinicke F., Hinrichs K., Visually supporting depth perception in angiography imaging, in: International symposium on smart graphics, 2006, pp. 93–104,.
[19]
Bruckner S., Gröller E., Instant volume visualization using maximum intensity difference accumulation, Comput Graph Forum 28 (2009) 775–782,. URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01474.x.
[20]
Díaz J., Vázquez P.-P., Depth-enhanced maximum intensity projection, in: Westermann R., Kindlmann G. (Eds.), IEEE/EG symposium on volume graphics, The Eurographics Association, 2010,.
[21]
Kersten-Oertel M., Jy-Shyang Chen S., Collins D.L., An evaluation of depth enhancing perceptual cues for vascular volume visualization in neurosurgery, IEEE Trans Vis Comput Graphics 20 (2014) 391–403,.
[22]
Weier M., Stengel M., Roth T., Didyk P., Eisemann E., Eisemann M., Grogorick S., Hinkenjann A., Kruijff E., Magnor M., Myszkowski K., Slusallek P., Perception-driven accelerated rendering, Comput Graph Forum 36 (2017) 611–643,. URL: http://doi.wiley.com/10.1111/cgf.13150.
[23]
Lafortune E.P., Willems Y.D., Rendering participating media with bidirectional path tracing, in: Proceedings of the eurographics workshop on rendering techniques ’96, 1996, pp. 91–100,. URL: http://link.springer.com/10.1007/978-3-7091-7484-5_10.
[24]
Koerner D., Portsmouth J., Sadlo F., Ertl T., Eberhardt B., Flux-limited diffusion for multiple scattering in participating media, Comput Graph Forum 33 (2014) 178–189,. URL: http://doi.wiley.com/10.1111/cgf.12342.
[25]
Kroes T., Post F.H., Botha C.P., Exposure render: An interactive photo-realistic volume rendering framework, Zuo X.-N. (Ed.), PLoS One 7 (2012),. URL: https://dx.plos.org/10.1371/journal.pone.0038586.
[26]
Bohak C., Aleksandrov J., Marolt M., Collaborative web-based merged volumetric and mesh rendering framework, in: Paolis L.T.D., Bourdot P. (Eds.), Augmented reality, virtual reality, and computer graphics, Springer International Publishing, Cham, 2019, pp. 36–42.
[27]
Šmajdek U., Lesar Ž., Marolt M., Bohak C., Combined volume and surface rendering with global illumination caching, Vis Comput (2023),.
[28]
Kronander J., Jönsson D., Low J., Ljung P., Ynnerman A., Unger J., Efficient visibility encoding for dynamic illumination in direct volume rendering, IEEE Trans Vis Comput Graphics 18 (2012) 447–462,.
[29]
Kniss J., Premoze S., Hansen C., Ebert D., Interactive translucent volume rendering and procedural modeling, in: IEEE visualization 2002, IEEE, 2002, pp. 109–116,.
[30]
Chan M.-Y., Wu Y., Mak W.-H., Chen W., Qu H., Perception-based transparency optimization for direct volume rendering, IEEE Trans Vis Comput Graphics 15 (2009) 1283–1290,. URL: http://ieeexplore.ieee.org/document/5290740/.
[31]
Correa C.D., Ma K.-L., Visibility histograms and visibility-driven transfer functions, IEEE Trans Vis Comput Graphics 17 (2011) 192–204,. URL: http://ieeexplore.ieee.org/document/5416704/.
[32]
Howard I.P., Depth perception, in: Stevens’ handbook of experimental psychology, John Wiley & Sons, Ltd, 2002,. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471214426.pas0103.
[33]
Hu P., Boorboor S., Jadhav S., Marino J., Mirhosseini S., Kaufman A.E., Spatial perception in immersive visualization: A study and findings, in: 2022 IEEE international symposium on mixed and augmented reality adjunct (ISMAR-adjunct), IEEE, 2022, pp. 369–372,.
[34]
Wanger L., The effect of shadow quality on the perception of spatial relationships in computer generated imagery, in: Proceedings of the 1992 symposium on interactive 3D graphics - SI3D ’92, ACM Press, New York, New York, USA, 1992, pp. 39–42,.
[35]
Boucheny C., Bonneau G.-P., Droulez J., Thibault G., Ploix S., A perceptive evaluation of volume rendering techniques, ACM Trans Appl Percept 5 (2009) 1–24,.
[36]
Titov A., Kersten-Oertel M., Drouin S., The effect of interactive cues on the perception of angiographic volumes in virtual reality, Comput Methods Biomech Biomed Eng: Imaging Vis, 10 (2022) 357–365,.
[37]
Ropinski T., Doring C., Rezk-Salama C., Interactive volumetric lighting simulating scattering and shadowing, in: 2010 IEEE Pacific visualization symposium (Pacificvis), IEEE, 2010, pp. 169–176,.
[38]
Englund R., Kottravel S., Ropinski T., A crowdsourcing system for integrated and reproducible evaluation in scientific visualization, in: 2016 IEEE Pacific visualization symposium (Pacificvis), IEEE, 2016, pp. 40–47,.
[39]
Diaz C., Walker M., Szafir D.A., Szafir D., Designing for depth perceptions in augmented reality, in: 2017 IEEE international symposium on mixed and augmented reality, ISMAR, IEEE, 2017, pp. 111–122,.
[40]
Heinrich F., Bornemann K., Lawonn K., Hansen C., Depth perception in projective augmented reality: An evaluation of advanced visualization techniques, in: 25th ACM symposium on virtual reality software and technology, ACM, New York, NY, USA, 2019, pp. 1–11,.
[41]
Lesar Ž., Bohak C., Marolt M., Evaluation of angiogram visualization methods for fast and reliable aneurysm diagnosis, in: Mello-Thoms C.R., Kupinski M.A. (Eds.), SPIE medical imaging, Vol. 9416, 2015,. URL: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2082179.
[42]
Drouin S., Di Giovanni D.A., Kersten-Oertel M., Collins D.L., Interaction driven enhancement of depth perception in angiographic volumes, IEEE Trans Vis Comput Graphics 26 (2020) 2247–2257,.
[43]
Kreiser J., Hermosilla P., Ropinski T., Void space surfaces to convey depth in vessel visualizations, IEEE Trans Vis Comput Graphics 27 (2021) 3913–3925,.
[44]
Lesar Ž., Data from: Evaluation of depth perception in crowded volumes, 2024,.
[45]
Žerovnik Mekuč M., Bohak C., Hudoklin S., Kim B.H., Romih R., Kim M.Y., Marolt M., Automatic segmentation of mitochondria and endolysosomes in volumetric electron microscopy data, Comput Biol Med (2020),. URL: https://linkinghub.elsevier.com/retrieve/pii/S0010482520300792.
[46]
Žerovnik Mekuč M., Bohak C., Boneš E., Hudoklin S., Romih R., Marolt M., Automatic segmentation and reconstruction of intracellular compartments in volumetric electron microscopy data, Comput Methods Programs Biomed 223 (2022),.
[47]
Schretter C., Kobbelt L., Dehaye P.-O., Golden ratio sequences for low-discrepancy sampling, J Graph Tools 16 (2012) 95–104,. URL: http://www.tandfonline.com/doi/abs/10.1080/2165347X.2012.679555.
[48]
McAuley S., Hill S., Hoffman N., Gotanda Y., Smits B., Burley B., Martinez A., Practical physically-based shading in film and game production, in: ACM SIGGRApH 2012 courses, ACM, New York, NY, USA, 2012, pp. 1–7,.
[49]
Toublanc D., Henyey–greenstein and mie phase functions in Monte Carlo radiative transfer computations, Appl Opt 35 (1996) 3270,. URL: https://opg.optica.org/abstract.cfm?URI=ao-35-18-3270.
[50]
Lesar Ž., Bohak C., Marolt M., Real-time interactive platform-agnostic volumetric path tracing in webgl 2.0, in: Proceedings of the 23rd international ACM conference on 3D web technology - web3D ’18, ACM Press, New York, New York, USA, 2018, pp. 1–7,. URL: http://dl.acm.org/citation.cfm?doid=3208806.3208814.
[51]
Keinert B., Innmann M., Sänger M., Stamminger M., Spherical fibonacci mapping, ACM Trans Graph 34 (2015) 1–7,.
[52]
Wexler M., van Boxtel J.J.A., Depth perception by the active observer, Trends in Cognitive Sciences 9 (2005) 431–438,. URL: https://linkinghub.elsevier.com/retrieve/pii/S1364661305002159.
[53]
Mamassian P., Kersten D., Illumination, shading and the perception of local orientation, Vis Res 36 (1996) 2351–2367,. URL: https://linkinghub.elsevier.com/retrieve/pii/0042698995002863.
[54]
Langer M.S., Bülthoff H.H., Depth discrimination from shading under diffuse lighting, Perception 29 (2000) 649–660,.

Cited By

View all

Index Terms

  1. Evaluation of depth perception in crowded volumes
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Computers and Graphics
    Computers and Graphics  Volume 120, Issue C
    May 2024
    160 pages

    Publisher

    Pergamon Press, Inc.

    United States

    Publication History

    Published: 18 November 2024

    Author Tags

    1. Volume rendering
    2. Crowded volumes
    3. Depth perception
    4. User study

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media