[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-14926-9_13guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Four State Deterministic Cellular Automaton Rule Emulating Random Diffusion

Published: 12 September 2022 Publication History

Abstract

We show how to construct a deterministic nearest-neighbour cellular automaton (CA) with four states which emulates diffusion on a one-dimensional lattice. The pseudo-random numbers needed for directing random walkers in the diffusion process are generated with the help of rule 30. This CA produces density profiles which agree very well with solutions of the diffusion equation, and we discuss this agreement for two different boundary and initial conditions. We also show how our construction can be generalized to higher dimensions.

References

[1]
Arita C, Krapivsky PL, and Mallick K Bulk diffusion in a kinetically constrained lattice gas J. Phys. A Math. General 2018 51 12 125002
[2]
Boon JP, Dab D, Kapral R, and Lawniczak AT Lattice gas automata for reactive systems Phys. Rep. 1996 273 2 55-148
[3]
Boyce, W.E., DiPrima, R.C.: Elementary Differential Equations and Boundary Value Problems, pp. 582–583. Wiley, New York (2001)
[4]
Chopard B and Droz M Cellular automata model for the diffusion equation J. Stat. Phys. 1991 64 859-892
[5]
Chopard B and Droz M Cellular Automata Modeling of Physical Systems 1998 Cambridge Cambridge University Press
[6]
Fukś H Solving two-dimensional density classification problem with two probabilistic cellular automata J. Cell. Autom. 2015 10 1–2 149-160
[7]
Hardy J, Pomeau Y, and de Pazzis O Time evolution of a two-dimensional classical lattice system Phys. Rev. Lett. 1973 31 276-279
[8]
Kreyszig, E.: Advanced Engineering Mathematics, p. 570. Wiley, New York (2011)
[9]
Medenjak M, Klobas K, and Prosen T Diffusion in deterministic interacting lattice systems Phys. Rev. Let. 2017 119 11
[10]
Nava-Sedeño, J.M., Hatzikirou, H., Klages, R., Deutsch, A.: Cellular automaton models for time-correlated random walks: derivation and analysis. Sci. Rep. 7, 16952 (2017)
[11]
Rothman, D.H., Zaleski, S.: Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge University Press, Cambridge (1997)
[12]
Shin, S.H., Yoo, K.Y.: Analysis of 2-state, 3-neighborhood cellular automata rules for cryptographic pseudorandom number generation. In: 2009 International Conference on Computational Science and Engineering, vol. 1, pp. 399–404 (2009)
[13]
Succi, S.: The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001)
[14]
Trevorrow, A., Rokicki, T.: Golly (2022). http://golly.sourceforge.net/
[15]
Voroney JP and Lawniczak AT Construction, mathematical description and coding of reactive lattice-gas cellular automaton Simul. Pract. Theory 2000 7 657-689
[16]
Wolf-Gladrow D Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction 2004 Heidelberg Springer
[17]
Wolfram S Random sequence generation by cellular automata Adv. Appl. Math. 1986 7 2 123-169

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Cellular Automata: 15th International Conference on Cellular Automata for Research and Industry, ACRI 2022, Geneva, Switzerland, September 12–15, 2022, Proceedings
Sep 2022
372 pages
ISBN:978-3-031-14925-2
DOI:10.1007/978-3-031-14926-9

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 12 September 2022

Author Tags

  1. Cellular automata
  2. Diffusion
  3. Random walk

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media