[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-73383-3_1guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking

Published: 03 November 2024 Publication History

Abstract

Open-vocabulary Multiple Object Tracking (MOT) aims to generalize trackers to novel categories not in the training set. Currently, the best-performing methods are mainly based on pure appearance matching. Due to the complexity of motion patterns in the large-vocabulary scenarios and unstable classification of the novel objects, the motion and semantics cues are either ignored or applied based on heuristics in the final matching steps by existing methods. In this paper, we present a unified framework SLAck that jointly considers semantics location, and appearance priors in the early steps of association and learns how to integrate all valuable information through a lightweight spatial and temporal object graph. Our method eliminates complex post-processing heuristics for fusing different cues and boosts the association performance significantly for large-scale open-vocabulary tracking. Without bells and whistles, we outperform previous state-of-the-art methods for novel classes tracking on the open-vocabulary MOT and TAO TETA benchmarks. Our code is available at github.com/siyuanliii/SLAck.

References

[1]
Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV (2019)
[2]
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP (2016)
[3]
Brasó, G., Leal-Taixé, L.: Learning a neural solver for multiple object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6247–6257 (2020)
[4]
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
[5]
Cao, J., Pang, J., Weng, X., Khirodkar, R., Kitani, K.: Observation-centric sort: rethinking sort for robust multi-object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9686–9696 (2023)
[6]
Cetintas, O., Brasó, G., Leal-Taixé, L.: Unifying short and long-term tracking with graph hierarchies. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22877–22887, June 2023
[7]
Dave A, Khurana T, Tokmakov P, Schmid C, and Ramanan D Vedaldi A, Bischof H, Brox T, and Frahm J-M TAO: a large-scale benchmark for tracking any object Computer Vision – ECCV 2020 2020 Cham Springer 436-454
[8]
Dendorfer, P., et al.: Mot20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)
[9]
Du, F., Xu, B., Tang, J., Zhang, Y., Wang, F., Li, H.: 1st place solution to ECCV-TAO-2020: detect and represent any object for tracking. arXiv preprint arXiv:2101.08040 (2021)
[10]
Du, Y., Wei, F., Zhang, Z., Shi, M., Gao, Y., Li, G.: Learning to prompt for open-vocabulary object detection with vision-language model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14084–14093 (2022)
[11]
Du Y et al. StrongSORT: make deepSORT great again IEEE Trans. Multimedia 2023 25 8725-8737
[12]
Geiger A, Lenz P, Stiller C, and Urtasun R Vision meets robotics: the kitti dataset Int. J. Robot. Res. 2013 32 11 1231-1237
[13]
Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)
[14]
Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR (2019)
[15]
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
[16]
Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)
[17]
Kim, V., Jung, G., Lee, S.W.: AM-SORT: adaptable motion predictor with historical trajectory embedding for multi-object tracking. arXiv preprint arXiv:2401.13950 (2024)
[18]
Li S, Danelljan M, Ding H, Huang TE, and Yu F Avidan S, Brostow G, Cissé M, Farinella GM, and Hassner T Tracking every thing in the wild ECCV 2022 2022 Cham Springer 498-515
[19]
Li, S., Fischer, T., Ke, L., Ding, H., Danelljan, M., Yu, F.: OVTrack: open-vocabulary multiple object tracking. In: CVPR (2023)
[20]
Li, S., et al.: Matching anything by segmenting anything. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18963–18973 (2024)
[21]
Liu, S., et al.: Grounding DINO: marrying DINO with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023)
[22]
Liu, Y., et al.: Opening up open world tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19045–19055 (2022)
[23]
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
[24]
Liu Z, Segu M, and Yu F Köthe U and Rother C COOLer: class-incremental learning for appearance-based multiple object tracking DAGM GCPR 2023 2023 Cham Springer 443-458
[25]
Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: TrackFormer: multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022)
[26]
Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)
[27]
Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: CVPR (2021)
[28]
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
[29]
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
[30]
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)
[31]
Segu, M., Piccinelli, L., Li, S., Van Gool, L., Yu, F., Schiele, B.: Walker: self-supervised multiple object tracking by walking on temporal appearance graphs. In: Computer Vision–ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings. Springer (2024)
[32]
Segu, M., Piccinelli, L., Li, S., Yang, Y.H., Schiele, B., Van Gool, L.: Samba: synchronized set-of-sequences modeling for end-to-end multiple object tracking. arXiv preprint (2024)
[33]
Segu, M., Schiele, B., Yu, F.: Darth: holistic test-time adaptation for multiple object tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9717–9727 (2023)
[34]
Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)
[35]
Sun, P., et al.: TransTrack: multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)
[36]
Wang Z, Zheng L, Liu Y, and Wang S Vedaldi A, Bischof H, Brox T, and Frahm JM Towards real-time multi-object tracking ECCV 2020 2020 Cham Springer 107-122
[37]
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: ICIP (2017)
[38]
Wu, J., Jiang, Y., Liu, Q., Yuan, Z., Bai, X., Bai, S.: General object foundation model for images and videos at scale. arXiv preprint arXiv:2312.09158 (2023)
[39]
Wu J, Liu Q, Jiang Y, Bai S, Yuille A, and Bai X Avidan S, Brostow G, Cissé M, Farinella GM, and Hassner T In defense of online models for video instance segmentation ECCV 2022 2022 Cham Springer 588-605
[40]
Yan, B., et al.: Universal instance perception as object discovery and retrieval. In: CVPR (2023)
[41]
Ye, M., et al.: Cascade-DETR: delving into high-quality universal object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6704–6714 (2023)
[42]
Zeng F, Dong B, Zhang Y, Wang T, Zhang X, and Wei Y Avidan S, Brostow G, Cissé M, Farinella GM, and Hassner T MOTR: end-to-end multiple-object tracking with transformer ECCV 2022 2022 Cham Springer 659-675
[43]
Zhang Y et al. Avidan S, Brostow G, Cissé M, Farinella GM, Hassner T, et al. ByteTrack: multi-object tracking by associating every detection box ECCV 2022 2022 Cham Springer 1-21
[44]
Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: On the fairness of detection and re-identification in multiple object tracking. IJCV (2021)
[45]
Zheng, G., Lin, S., Zuo, H., Fu, C., Pan, J.: NetTrack: tracking highly dynamic objects with a net. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19145–19155 (2024)
[46]
Zhou X, Girdhar R, Joulin A, Krähenbühl P, and Misra I Avidan S, Brostow G, Cissé M, Farinella GM, and Hassner T Detecting twenty-thousand classes using image-level supervision ECCV 2022 2022 Cham Springer 350-368

Index Terms

  1. SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Guide Proceedings
            Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part XXVII
            Sep 2024
            568 pages
            ISBN:978-3-031-73382-6
            DOI:10.1007/978-3-031-73383-3
            • Editors:
            • Aleš Leonardis,
            • Elisa Ricci,
            • Stefan Roth,
            • Olga Russakovsky,
            • Torsten Sattler,
            • Gül Varol

            Publisher

            Springer-Verlag

            Berlin, Heidelberg

            Publication History

            Published: 03 November 2024

            Author Tags

            1. Open-Vocabulary
            2. Multiple Object Tracking

            Qualifiers

            • Article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 28 Feb 2025

            Other Metrics

            Citations

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media