Abstract
Open-vocabulary Multiple Object Tracking (MOT) aims to generalize trackers to novel categories not in the training set. Currently, the best-performing methods are mainly based on pure appearance matching. Due to the complexity of motion patterns in the large-vocabulary scenarios and unstable classification of the novel objects, the motion and semantics cues are either ignored or applied based on heuristics in the final matching steps by existing methods. In this paper, we present a unified framework SLAck that jointly considers semantics location, and appearance priors in the early steps of association and learns how to integrate all valuable information through a lightweight spatial and temporal object graph. Our method eliminates complex post-processing heuristics for fusing different cues and boosts the association performance significantly for large-scale open-vocabulary tracking. Without bells and whistles, we outperform previous state-of-the-art methods for novel classes tracking on the open-vocabulary MOT and TAO TETA benchmarks. Our code is available at github.com/siyuanliii/SLAck.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV (2019)
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP (2016)
Brasó, G., Leal-Taixé, L.: Learning a neural solver for multiple object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6247–6257 (2020)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Cao, J., Pang, J., Weng, X., Khirodkar, R., Kitani, K.: Observation-centric sort: rethinking sort for robust multi-object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9686–9696 (2023)
Cetintas, O., Brasó, G., Leal-Taixé, L.: Unifying short and long-term tracking with graph hierarchies. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22877–22887, June 2023
Dave, A., Khurana, T., Tokmakov, P., Schmid, C., Ramanan, D.: TAO: a large-scale benchmark for tracking any object. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 436–454. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_26
Dendorfer, P., et al.: Mot20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)
Du, F., Xu, B., Tang, J., Zhang, Y., Wang, F., Li, H.: 1st place solution to ECCV-TAO-2020: detect and represent any object for tracking. arXiv preprint arXiv:2101.08040 (2021)
Du, Y., Wei, F., Zhang, Z., Shi, M., Gao, Y., Li, G.: Learning to prompt for open-vocabulary object detection with vision-language model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14084–14093 (2022)
Du, Y., et al.: StrongSORT: make deepSORT great again. IEEE Trans. Multimedia 25, 8725–8737 (2023)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)
Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)
Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)
Kim, V., Jung, G., Lee, S.W.: AM-SORT: adaptable motion predictor with historical trajectory embedding for multi-object tracking. arXiv preprint arXiv:2401.13950 (2024)
Li, S., Danelljan, M., Ding, H., Huang, T.E., Yu, F.: Tracking every thing in the wild. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 498–515. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_29
Li, S., Fischer, T., Ke, L., Ding, H., Danelljan, M., Yu, F.: OVTrack: open-vocabulary multiple object tracking. In: CVPR (2023)
Li, S., et al.: Matching anything by segmenting anything. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18963–18973 (2024)
Liu, S., et al.: Grounding DINO: marrying DINO with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023)
Liu, Y., et al.: Opening up open world tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19045–19055 (2022)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Liu, Z., Segu, M., Yu, F.: COOLer: class-incremental learning for appearance-based multiple object tracking. In: Köthe, U., Rother, C. (eds.) DAGM GCPR 2023. LNCS, vol. 14264, pp. 443–458. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-54605-1_29
Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: TrackFormer: multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022)
Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)
Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: CVPR (2021)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)
Segu, M., Piccinelli, L., Li, S., Van Gool, L., Yu, F., Schiele, B.: Walker: self-supervised multiple object tracking by walking on temporal appearance graphs. In: Computer Vision–ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings. Springer (2024)
Segu, M., Piccinelli, L., Li, S., Yang, Y.H., Schiele, B., Van Gool, L.: Samba: synchronized set-of-sequences modeling for end-to-end multiple object tracking. arXiv preprint (2024)
Segu, M., Schiele, B., Yu, F.: Darth: holistic test-time adaptation for multiple object tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9717–9727 (2023)
Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)
Sun, P., et al.: TransTrack: multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)
Wang, Z., Zheng, L., Liu, Y., Wang, S.: Towards real-time multi-object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 107–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_7
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: ICIP (2017)
Wu, J., Jiang, Y., Liu, Q., Yuan, Z., Bai, X., Bai, S.: General object foundation model for images and videos at scale. arXiv preprint arXiv:2312.09158 (2023)
Wu, J., Liu, Q., Jiang, Y., Bai, S., Yuille, A., Bai, X.: In defense of online models for video instance segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 588–605. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_34
Yan, B., et al.: Universal instance perception as object discovery and retrieval. In: CVPR (2023)
Ye, M., et al.: Cascade-DETR: delving into high-quality universal object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6704–6714 (2023)
Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: MOTR: end-to-end multiple-object tracking with transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13687, pp. 659–675. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_38
Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_1
Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: On the fairness of detection and re-identification in multiple object tracking. IJCV (2021)
Zheng, G., Lin, S., Zuo, H., Fu, C., Pan, J.: NetTrack: tracking highly dynamic objects with a net. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19145–19155 (2024)
Zhou, X., Girdhar, R., Joulin, A., Krähenbühl, P., Misra, I.: Detecting twenty-thousand classes using image-level supervision. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13669, pp. 350–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_21
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, S. et al. (2025). SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15085. Springer, Cham. https://doi.org/10.1007/978-3-031-73383-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-73383-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73382-6
Online ISBN: 978-3-031-73383-3
eBook Packages: Computer ScienceComputer Science (R0)