[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15085))

Included in the following conference series:

  • 99 Accesses

Abstract

Open-vocabulary Multiple Object Tracking (MOT) aims to generalize trackers to novel categories not in the training set. Currently, the best-performing methods are mainly based on pure appearance matching. Due to the complexity of motion patterns in the large-vocabulary scenarios and unstable classification of the novel objects, the motion and semantics cues are either ignored or applied based on heuristics in the final matching steps by existing methods. In this paper, we present a unified framework SLAck that jointly considers semantics location, and appearance priors in the early steps of association and learns how to integrate all valuable information through a lightweight spatial and temporal object graph. Our method eliminates complex post-processing heuristics for fusing different cues and boosts the association performance significantly for large-scale open-vocabulary tracking. Without bells and whistles, we outperform previous state-of-the-art methods for novel classes tracking on the open-vocabulary MOT and TAO TETA benchmarks. Our code is available at github.com/siyuanliii/SLAck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV (2019)

    Google Scholar 

  2. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: ICIP (2016)

    Google Scholar 

  3. Brasó, G., Leal-Taixé, L.: Learning a neural solver for multiple object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6247–6257 (2020)

    Google Scholar 

  4. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  5. Cao, J., Pang, J., Weng, X., Khirodkar, R., Kitani, K.: Observation-centric sort: rethinking sort for robust multi-object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9686–9696 (2023)

    Google Scholar 

  6. Cetintas, O., Brasó, G., Leal-Taixé, L.: Unifying short and long-term tracking with graph hierarchies. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22877–22887, June 2023

    Google Scholar 

  7. Dave, A., Khurana, T., Tokmakov, P., Schmid, C., Ramanan, D.: TAO: a large-scale benchmark for tracking any object. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 436–454. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_26

    Chapter  Google Scholar 

  8. Dendorfer, P., et al.: Mot20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)

  9. Du, F., Xu, B., Tang, J., Zhang, Y., Wang, F., Li, H.: 1st place solution to ECCV-TAO-2020: detect and represent any object for tracking. arXiv preprint arXiv:2101.08040 (2021)

  10. Du, Y., Wei, F., Zhang, Z., Shi, M., Gao, Y., Li, G.: Learning to prompt for open-vocabulary object detection with vision-language model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14084–14093 (2022)

    Google Scholar 

  11. Du, Y., et al.: StrongSORT: make deepSORT great again. IEEE Trans. Multimedia 25, 8725–8737 (2023)

    Article  Google Scholar 

  12. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  13. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)

  14. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR (2019)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  16. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)

    Google Scholar 

  17. Kim, V., Jung, G., Lee, S.W.: AM-SORT: adaptable motion predictor with historical trajectory embedding for multi-object tracking. arXiv preprint arXiv:2401.13950 (2024)

  18. Li, S., Danelljan, M., Ding, H., Huang, T.E., Yu, F.: Tracking every thing in the wild. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 498–515. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_29

    Chapter  Google Scholar 

  19. Li, S., Fischer, T., Ke, L., Ding, H., Danelljan, M., Yu, F.: OVTrack: open-vocabulary multiple object tracking. In: CVPR (2023)

    Google Scholar 

  20. Li, S., et al.: Matching anything by segmenting anything. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18963–18973 (2024)

    Google Scholar 

  21. Liu, S., et al.: Grounding DINO: marrying DINO with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023)

  22. Liu, Y., et al.: Opening up open world tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19045–19055 (2022)

    Google Scholar 

  23. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  24. Liu, Z., Segu, M., Yu, F.: COOLer: class-incremental learning for appearance-based multiple object tracking. In: Köthe, U., Rother, C. (eds.) DAGM GCPR 2023. LNCS, vol. 14264, pp. 443–458. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-54605-1_29

    Chapter  Google Scholar 

  25. Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: TrackFormer: multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022)

    Google Scholar 

  26. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

  27. Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: CVPR (2021)

    Google Scholar 

  28. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  29. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  30. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)

    Google Scholar 

  31. Segu, M., Piccinelli, L., Li, S., Van Gool, L., Yu, F., Schiele, B.: Walker: self-supervised multiple object tracking by walking on temporal appearance graphs. In: Computer Vision–ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings. Springer (2024)

    Google Scholar 

  32. Segu, M., Piccinelli, L., Li, S., Yang, Y.H., Schiele, B., Van Gool, L.: Samba: synchronized set-of-sequences modeling for end-to-end multiple object tracking. arXiv preprint (2024)

    Google Scholar 

  33. Segu, M., Schiele, B., Yu, F.: Darth: holistic test-time adaptation for multiple object tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9717–9727 (2023)

    Google Scholar 

  34. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)

    Google Scholar 

  35. Sun, P., et al.: TransTrack: multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)

  36. Wang, Z., Zheng, L., Liu, Y., Wang, S.: Towards real-time multi-object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 107–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_7

    Chapter  Google Scholar 

  37. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: ICIP (2017)

    Google Scholar 

  38. Wu, J., Jiang, Y., Liu, Q., Yuan, Z., Bai, X., Bai, S.: General object foundation model for images and videos at scale. arXiv preprint arXiv:2312.09158 (2023)

  39. Wu, J., Liu, Q., Jiang, Y., Bai, S., Yuille, A., Bai, X.: In defense of online models for video instance segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13688, pp. 588–605. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19815-1_34

    Chapter  Google Scholar 

  40. Yan, B., et al.: Universal instance perception as object discovery and retrieval. In: CVPR (2023)

    Google Scholar 

  41. Ye, M., et al.: Cascade-DETR: delving into high-quality universal object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6704–6714 (2023)

    Google Scholar 

  42. Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: MOTR: end-to-end multiple-object tracking with transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13687, pp. 659–675. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_38

    Chapter  Google Scholar 

  43. Zhang, Y., et al.: ByteTrack: multi-object tracking by associating every detection box. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 1–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_1

    Chapter  Google Scholar 

  44. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: On the fairness of detection and re-identification in multiple object tracking. IJCV (2021)

    Google Scholar 

  45. Zheng, G., Lin, S., Zuo, H., Fu, C., Pan, J.: NetTrack: tracking highly dynamic objects with a net. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19145–19155 (2024)

    Google Scholar 

  46. Zhou, X., Girdhar, R., Joulin, A., Krähenbühl, P., Misra, I.: Detecting twenty-thousand classes using image-level supervision. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13669, pp. 350–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyuan Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6461 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S. et al. (2025). SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15085. Springer, Cham. https://doi.org/10.1007/978-3-031-73383-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73383-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73382-6

  • Online ISBN: 978-3-031-73383-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics