[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Quaternion Harmonic moments and extreme learning machine for color object recognition

Published: 01 August 2019 Publication History

Abstract

The quaternary orthogonal moments have been widely used as color image descriptors owe to their remarkable color and shape information encapsulation capability. Their computation, however, depends on finding the optimal value of a unit pure quaternion parameter, which is done empirically and with no warranty of optimality. We propose a 2D color object recognition method that relies on the quaternion-valued parameter-free disc-harmonic moment invariants (QHMs) fed into the quaternion extreme learning machine (QELM). The role of this latter is to maintain the correlation between the four parts, real and imaginary, of the quaternary descriptor coefficients. Several datasets are used for recognition experiments. We draw the conclusion that: (1) our quaternion-valued QHMs invariants outperform other quaternary moments, (2) the quaternion-valued moment invariants give results better than the modulus-based moment invariants and (3) the QELM yields results better than the state-of-the-art classifiers.

References

[1]
Arena P, Fortuna L, Muscato G, Xibilia MG (1997) Multilayer perceptrons to approximate quaternion valued functions. Neural Netw 10(2):335–342
[2]
Bei-Jing C, Xing-Ming S, Ding-Cheng W, Xiao-Ping Z (2012) Color face recognition using quaternion representation of color image. Acta Automatica Sinica 38 (11):1815
[3]
Bishop CM (2006) Pattern recognition and machine learning. Springer-Verlag, Secaucus
[4]
Burel G, Henoco H (1995) Determination of the orientation of 3d objects using spherical harmonics. Graph Model Image Process 57(5):400–408
[5]
Chen BJ, Shu HZ, Zhang H, Chen G, Toumoulin C, Dillenseger JL, Luo LM (2012) Quaternion zernike moments and their invariants for color image analysis and object recognition. Signal Process 92(2):308–318
[6]
Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144
[7]
Dad N, Ennahnahi N, El Alaoui Ouatik S (2014) M Oumsis. 2d color shapes description by quaternion disc-harmonic moments. In: IEEE/ACS 11th international conference on computer systems and applications (AICCSA), pp 266–272
[8]
Dad N, Ennahnahi N, Ouatik SE, Oumsis M (2016) Quaternion disc-harmonic moments based on healpix sampling for fast 2d colour shape retrieval. In: 2016 international symposium on signal, image, video and communications (ISIVC), pp 131–136
[9]
Dad N, Ennahnahi N, El Alaoui Ouatik S, Oumsis M (2016) Adaptation of spherical harmonic transform for color shape reconstruction and retrieval using quaternion algebra. J Electron Imaging 25(5):1–14
[10]
De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans K, De Moor B, Vandewalle J, Suykens JAK (2010) Ls-svmlab toolbox user’s guide version 1.8. Technical Report 10-146, ESAT-SISTA, K.U.Leuven (Leuven, Belgium)
[11]
de Chazal P, Tapson J, van Schaik A (2015) A comparison of extreme learning machines and back-propagation trained feed-forward networks processing the mnist database. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 2165–2168
[12]
Deng W, Zheng Q, Chen L (2009) Regularized extreme learning machine. In: 2009 IEEE symposium on computational intelligence and data mining, pp 389–395
[13]
Dilts GA (1985) Computation of spherical harmonic expansion coefficients via fft’s. J Comput Phys 57(3):439–453
[14]
Ding S, Zhao H, Zhang Y, Xu X, Nie R (2015) Extreme learning machine: algorithm, theory and applications. Artif Intell Rev 44(1):103–115
[15]
Ding S, Guo L, Hou Y (2017) Extreme learning machine with kernel model based on deep learning. Neural Comput Applic 28(8):1975–1984
[16]
Ennahnahi N, Oumsis M, Bouhouch A, Meknassi M (2010) Fast shape description based on a set of moments defined on the unit disc and inspired by three-dimensional spherical harmonics. Image Process IET 4(2):120–131
[17]
Flusser J, Zitova B, Suk T (2009) Moments and moment invariants in pattern recognition. Wiley, Chichester
[18]
Flusser J, Suk T, Zitová B (2009) Orthogonal moments. Wiley, Chichester, pp 165–211
[19]
Gautam K, Quadri N, Pareek A, Choudhary SS (2014) A face recognition system based on back propagation neural network using haar wavelet transform and morphology. Springer, New Delhi, pp 87–94
[20]
Gestel Tv, Suykens JAK, Baesens B, Viaene S, Vanthienen J, Dedene G, de Moor B, Vandewalle J (2004) Benchmarking least squares support vector machine classifiers. Mach Learn 54(1):5–32
[21]
Geusebroek J-M, Burghouts GJ, Smeulders AWM (2005) The amsterdam library of object images. Int J Comput Vis 61(1):103–112
[22]
Gough W (1984) Quaternions and spherical harmonics. Eur J Phys 5(3):163
[23]
Hamilton WR (1844) II. on quaternions; or on a new system of imaginaries in algebra. Philos Mag Series 3 25(163):10–13
[24]
He B, Xu D, Nian R, Heeswijk Mv, Yu Q, Miche Y, Lendasse A (2014) Fast face recognition via sparse coding and extreme learning machine. Cogn Comput 6(2):264–277
[25]
Hosny KM, Darwish MM (2017) Accurate computation of quaternion polar complex exponential transform for color images in different coordinate systems. J Electron Imaging 26(2):023021
[26]
Iosifidis A, Tefas A, Pitas I (2015) On the kernel extreme learning machine classifier. Pattern Recogn Lett 54:11–17
[27]
Jing JY (2011) Exponent moments and its application in pattern recognition. Dissertation, Beijing University of Posts and Telecommunications
[28]
Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Proceedings of the 2003 eurographics/ACM SIGGRAPH symposium on geometry processing, SGP ’03. Eurographics Association, Aire-la-Ville, pp 156–164
[29]
Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497
[30]
Li YN (2013) Quaternion polar harmonic transforms for color images. IEEE Signal Process Lett 20(8):803–806
[31]
López-González G, Nancy A-D, Bayro-Corrochano E (2014) Quaternion support vector classifier. Springer International Publishing, Cham, pp 722–729
[32]
Mennesson J, Saint-Jean C, Mascarilla L (2010) New geometric fourier descriptors for color image recognition. In: 2010 IEEE international conference on image processing, pp 2685–2688
[33]
Minemoto T, Isokawa T, Nishimura H, Matsui N (2017) Feed forward neural network with random quaternionic neurons. Signal Process 136(C):59–68
[34]
Nene S, Nayar S, Murase H (1996) Columbia object image library (COIL-100). Technical report, Columbia University
[35]
Nitta T (1995) A quaternary version of the back-propagation algorithm. In: IEEE international conference on neural networks proceedings, vol 5, pp 2753–2756
[36]
Ren H, Ping Z, Bo W, Wu W, Sheng Y (2003) Multidistortion-invariant image recognition with radial harmonic fourier moments. J Opt Soc Am A 20(4):631–637
[37]
Sangwine SJ (1996) Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electron Lett 32(21):1979–1980
[38]
Saupe D, Vranić DV (2001) 3D model retrieval with spherical harmonics and moments. Springer, Berlin, pp 392–397
[39]
Shao Z, Shu H, Wu J, Chen B, Coatrieux JL (2014) Quaternion bessel–fourier moments and their invariant descriptors for object reconstruction and recognition. Pattern Recogn 47(2):603–611
[40]
Shu H, Luo L, Bao X, Yu W, Han G (2000) An efficient method for computation of legendre moments. Graph Model 62(4):237–262
[41]
Shu HZ, Chen BJ, Chen G, Ge J (2014) Color face recognition based on quaternion zernike moment invariants and quaternion bp neural network. In: Advanced research in material science and mechanical engineering, volume 446 of applied mechanics and materials. Trans Tech Publications, 1, pp 1034–1039
[42]
Spacek L (2007) Collection of facial images: Faces95. http://cswww.essex.ac.uk/mv/allfaces
[43]
Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300
[44]
Xavier de Souza S, Suykens JAK, Vandewalle J, Bolle D (2010) Coupled simulated annealing. IEEE Trans Syst Man Cybern Part B 40(2):320–335
[45]
Xiang-yang W, Pan-pan N, Hong-ying Y, Chun-peng W, Ai-long W (2014) A new robust color image watermarking using local quaternion exponent moments. Inf Sci 277:731–754
[46]
Xiang-yang W, Wei-yi L, Hong-ying Y, Pei W, Yong-wei L (2015) Quaternion polar complex exponential transform for invariant color image description. Appl Math Comput 256:951–967
[47]
Xiang-yang W, Wei-yi L, Hong-ying Y, Pan-pan N, Yong-wei L (2015) Invariant quaternion radial harmonic fourier moments for color image retrieval. Opt Laser Technol 66(0):78–88
[48]
Xiao B, Ma J-F, Wang X (2010) Image analysis by bessel–fourier moments. Pattern Recogn 43(8):2620–2629
[49]
Yap PT, Jiang X, Chichung Kot A (2010) Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans Pattern Anal Mach Intell 32(7):1259–1270
[50]
Zeng R, Wu J, Shao Z, Senhadji L, Shu H (2014) Quaternion softmax classifier. Electron Lett 50(25):1929–1931

Cited By

View all
  • (2023)Quaternion discrete orthogonal Hahn moments convolutional neural network for color image classification and face recognitionMultimedia Tools and Applications10.1007/s11042-023-14866-482:21(32827-32853)Online publication date: 2-Mar-2023
  • (2022)Target Recognition Technology of Multimedia Platform Based on a Convolutional Neural NetworkAdvances in Multimedia10.1155/2022/81889362022Online publication date: 1-Jan-2022
  • (2021)CUDAQuat: new parallel framework for fast computation of quaternion moments for color images applicationsCluster Computing10.1007/s10586-021-03271-x24:3(2385-2406)Online publication date: 1-Sep-2021

Index Terms

  1. Quaternion Harmonic moments and extreme learning machine for color object recognition
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Multimedia Tools and Applications
          Multimedia Tools and Applications  Volume 78, Issue 15
          Aug 2019
          1603 pages

          Publisher

          Kluwer Academic Publishers

          United States

          Publication History

          Published: 01 August 2019

          Author Tags

          1. Quaternion algebra
          2. Color image feature extraction
          3. Disc-Harmonic moments
          4. Zernike moments
          5. Spherical harmonics
          6. Color object recognition
          7. Back-propagation neural networks
          8. Extreme learning machine

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 09 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Quaternion discrete orthogonal Hahn moments convolutional neural network for color image classification and face recognitionMultimedia Tools and Applications10.1007/s11042-023-14866-482:21(32827-32853)Online publication date: 2-Mar-2023
          • (2022)Target Recognition Technology of Multimedia Platform Based on a Convolutional Neural NetworkAdvances in Multimedia10.1155/2022/81889362022Online publication date: 1-Jan-2022
          • (2021)CUDAQuat: new parallel framework for fast computation of quaternion moments for color images applicationsCluster Computing10.1007/s10586-021-03271-x24:3(2385-2406)Online publication date: 1-Sep-2021

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media