[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Quaternion Harmonic moments and extreme learning machine for color object recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The quaternary orthogonal moments have been widely used as color image descriptors owe to their remarkable color and shape information encapsulation capability. Their computation, however, depends on finding the optimal value of a unit pure quaternion parameter, which is done empirically and with no warranty of optimality. We propose a 2D color object recognition method that relies on the quaternion-valued parameter-free disc-harmonic moment invariants (QHMs) fed into the quaternion extreme learning machine (QELM). The role of this latter is to maintain the correlation between the four parts, real and imaginary, of the quaternary descriptor coefficients. Several datasets are used for recognition experiments. We draw the conclusion that: (1) our quaternion-valued QHMs invariants outperform other quaternary moments, (2) the quaternion-valued moment invariants give results better than the modulus-based moment invariants and (3) the QELM yields results better than the state-of-the-art classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Arena P, Fortuna L, Muscato G, Xibilia MG (1997) Multilayer perceptrons to approximate quaternion valued functions. Neural Netw 10(2):335–342

    Article  Google Scholar 

  2. Bei-Jing C, Xing-Ming S, Ding-Cheng W, Xiao-Ping Z (2012) Color face recognition using quaternion representation of color image. Acta Automatica Sinica 38 (11):1815

    Article  MathSciNet  Google Scholar 

  3. Bishop CM (2006) Pattern recognition and machine learning. Springer-Verlag, Secaucus

    MATH  Google Scholar 

  4. Burel G, Henoco H (1995) Determination of the orientation of 3d objects using spherical harmonics. Graph Model Image Process 57(5):400–408

    Article  Google Scholar 

  5. Chen BJ, Shu HZ, Zhang H, Chen G, Toumoulin C, Dillenseger JL, Luo LM (2012) Quaternion zernike moments and their invariants for color image analysis and object recognition. Signal Process 92(2):308–318

    Article  Google Scholar 

  6. Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144

    Article  MathSciNet  MATH  Google Scholar 

  7. Dad N, Ennahnahi N, El Alaoui Ouatik S (2014) M Oumsis. 2d color shapes description by quaternion disc-harmonic moments. In: IEEE/ACS 11th international conference on computer systems and applications (AICCSA), pp 266–272

  8. Dad N, Ennahnahi N, Ouatik SE, Oumsis M (2016) Quaternion disc-harmonic moments based on healpix sampling for fast 2d colour shape retrieval. In: 2016 international symposium on signal, image, video and communications (ISIVC), pp 131–136

  9. Dad N, Ennahnahi N, El Alaoui Ouatik S, Oumsis M (2016) Adaptation of spherical harmonic transform for color shape reconstruction and retrieval using quaternion algebra. J Electron Imaging 25(5):1–14

    Article  Google Scholar 

  10. De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans K, De Moor B, Vandewalle J, Suykens JAK (2010) Ls-svmlab toolbox user’s guide version 1.8. Technical Report 10-146, ESAT-SISTA, K.U.Leuven (Leuven, Belgium)

  11. de Chazal P, Tapson J, van Schaik A (2015) A comparison of extreme learning machines and back-propagation trained feed-forward networks processing the mnist database. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 2165–2168

  12. Deng W, Zheng Q, Chen L (2009) Regularized extreme learning machine. In: 2009 IEEE symposium on computational intelligence and data mining, pp 389–395

  13. Dilts GA (1985) Computation of spherical harmonic expansion coefficients via fft’s. J Comput Phys 57(3):439–453

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding S, Zhao H, Zhang Y, Xu X, Nie R (2015) Extreme learning machine: algorithm, theory and applications. Artif Intell Rev 44(1):103–115

    Article  Google Scholar 

  15. Ding S, Guo L, Hou Y (2017) Extreme learning machine with kernel model based on deep learning. Neural Comput Applic 28(8):1975–1984

    Article  Google Scholar 

  16. Ennahnahi N, Oumsis M, Bouhouch A, Meknassi M (2010) Fast shape description based on a set of moments defined on the unit disc and inspired by three-dimensional spherical harmonics. Image Process IET 4(2):120–131

    Article  Google Scholar 

  17. Flusser J, Zitova B, Suk T (2009) Moments and moment invariants in pattern recognition. Wiley, Chichester

    Book  MATH  Google Scholar 

  18. Flusser J, Suk T, Zitová B (2009) Orthogonal moments. Wiley, Chichester, pp 165–211

    MATH  Google Scholar 

  19. Gautam K, Quadri N, Pareek A, Choudhary SS (2014) A face recognition system based on back propagation neural network using haar wavelet transform and morphology. Springer, New Delhi, pp 87–94

    Google Scholar 

  20. Gestel Tv, Suykens JAK, Baesens B, Viaene S, Vanthienen J, Dedene G, de Moor B, Vandewalle J (2004) Benchmarking least squares support vector machine classifiers. Mach Learn 54(1):5–32

    Article  MATH  Google Scholar 

  21. Geusebroek J-M, Burghouts GJ, Smeulders AWM (2005) The amsterdam library of object images. Int J Comput Vis 61(1):103–112

    Article  Google Scholar 

  22. Gough W (1984) Quaternions and spherical harmonics. Eur J Phys 5(3):163

    Article  MathSciNet  Google Scholar 

  23. Hamilton WR (1844) II. on quaternions; or on a new system of imaginaries in algebra. Philos Mag Series 3 25(163):10–13

    Google Scholar 

  24. He B, Xu D, Nian R, Heeswijk Mv, Yu Q, Miche Y, Lendasse A (2014) Fast face recognition via sparse coding and extreme learning machine. Cogn Comput 6(2):264–277

    Google Scholar 

  25. Hosny KM, Darwish MM (2017) Accurate computation of quaternion polar complex exponential transform for color images in different coordinate systems. J Electron Imaging 26(2):023021

    Article  Google Scholar 

  26. Iosifidis A, Tefas A, Pitas I (2015) On the kernel extreme learning machine classifier. Pattern Recogn Lett 54:11–17

    Article  Google Scholar 

  27. Jing JY (2011) Exponent moments and its application in pattern recognition. Dissertation, Beijing University of Posts and Telecommunications

  28. Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Proceedings of the 2003 eurographics/ACM SIGGRAPH symposium on geometry processing, SGP ’03. Eurographics Association, Aire-la-Ville, pp 156–164

  29. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Article  Google Scholar 

  30. Li YN (2013) Quaternion polar harmonic transforms for color images. IEEE Signal Process Lett 20(8):803–806

    Article  Google Scholar 

  31. López-González G, Nancy A-D, Bayro-Corrochano E (2014) Quaternion support vector classifier. Springer International Publishing, Cham, pp 722–729

    Google Scholar 

  32. Mennesson J, Saint-Jean C, Mascarilla L (2010) New geometric fourier descriptors for color image recognition. In: 2010 IEEE international conference on image processing, pp 2685–2688

  33. Minemoto T, Isokawa T, Nishimura H, Matsui N (2017) Feed forward neural network with random quaternionic neurons. Signal Process 136(C):59–68

    Article  Google Scholar 

  34. Nene S, Nayar S, Murase H (1996) Columbia object image library (COIL-100). Technical report, Columbia University

  35. Nitta T (1995) A quaternary version of the back-propagation algorithm. In: IEEE international conference on neural networks proceedings, vol 5, pp 2753–2756

  36. Ren H, Ping Z, Bo W, Wu W, Sheng Y (2003) Multidistortion-invariant image recognition with radial harmonic fourier moments. J Opt Soc Am A 20(4):631–637

    Article  MathSciNet  Google Scholar 

  37. Sangwine SJ (1996) Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electron Lett 32(21):1979–1980

    Article  Google Scholar 

  38. Saupe D, Vranić DV (2001) 3D model retrieval with spherical harmonics and moments. Springer, Berlin, pp 392–397

    MATH  Google Scholar 

  39. Shao Z, Shu H, Wu J, Chen B, Coatrieux JL (2014) Quaternion bessel–fourier moments and their invariant descriptors for object reconstruction and recognition. Pattern Recogn 47(2):603–611

    Article  MATH  Google Scholar 

  40. Shu H, Luo L, Bao X, Yu W, Han G (2000) An efficient method for computation of legendre moments. Graph Model 62(4):237–262

    Article  Google Scholar 

  41. Shu HZ, Chen BJ, Chen G, Ge J (2014) Color face recognition based on quaternion zernike moment invariants and quaternion bp neural network. In: Advanced research in material science and mechanical engineering, volume 446 of applied mechanics and materials. Trans Tech Publications, 1, pp 1034–1039

  42. Spacek L (2007) Collection of facial images: Faces95. http://cswww.essex.ac.uk/mv/allfaces

  43. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  44. Xavier de Souza S, Suykens JAK, Vandewalle J, Bolle D (2010) Coupled simulated annealing. IEEE Trans Syst Man Cybern Part B 40(2):320–335

    Article  Google Scholar 

  45. Xiang-yang W, Pan-pan N, Hong-ying Y, Chun-peng W, Ai-long W (2014) A new robust color image watermarking using local quaternion exponent moments. Inf Sci 277:731–754

    Article  Google Scholar 

  46. Xiang-yang W, Wei-yi L, Hong-ying Y, Pei W, Yong-wei L (2015) Quaternion polar complex exponential transform for invariant color image description. Appl Math Comput 256:951–967

    MathSciNet  MATH  Google Scholar 

  47. Xiang-yang W, Wei-yi L, Hong-ying Y, Pan-pan N, Yong-wei L (2015) Invariant quaternion radial harmonic fourier moments for color image retrieval. Opt Laser Technol 66(0):78–88

    Article  Google Scholar 

  48. Xiao B, Ma J-F, Wang X (2010) Image analysis by bessel–fourier moments. Pattern Recogn 43(8):2620–2629

    Article  MATH  Google Scholar 

  49. Yap PT, Jiang X, Chichung Kot A (2010) Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans Pattern Anal Mach Intell 32(7):1259–1270

    Article  Google Scholar 

  50. Zeng R, Wu J, Shao Z, Senhadji L, Shu H (2014) Quaternion softmax classifier. Electron Lett 50(25):1929–1931

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisrine Dad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Operations on quaternions

Appendix: Operations on quaternions

A quaternion [23] is a generalization of a complex number. It consists of one real part and three imaginary parts as q = qa + qbi + qcj + qdk.

The imaginary units i, j and k follow the combinations:i2 = j2 = k2 = − 1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

The conjugate and the modulus of a quaternion number q are respectively defined by

$$ q^{\ast}=q^{a}-q^{b}i-q^{c}j-q^{d}k, $$
(A1)
$$ |q|=\sqrt{(q^{a})^{2}+(q^{b})^{2}+(q^{c})^{2}+(q^{d})^{2}}. $$
(A2)

The dot product of two quaternions q1 and q2 is defined as:

$$ q_{1}\bullet q_{2}= {q_{1}^{a}} {q_{2}^{a}} + {q_{1}^{b}} {q_{2}^{b}} i+{q_{1}^{c}} {q_{2}^{c}} j+{q_{1}^{d}} {q_{2}^{d}} k, $$
(A3)

and the cross product as:

$$ \begin{array}{@{}rcl@{}} q_{1}\otimes q_{2}&=& ({q_{1}^{a}} {q_{2}^{a}}-{q_{1}^{b}} {q_{2}^{b}}-{q_{1}^{c}} {q_{2}^{c}}-{q_{1}^{d}} {q_{2}^{d}}) + ({q_{1}^{a}} {q_{2}^{b}}+{q_{1}^{b}} {q_{2}^{a}}+{q_{1}^{c}} {q_{2}^{d}}-{q_{1}^{d}} {q_{2}^{c}})i\\ &&+ ({q_{1}^{a}} {q_{2}^{c}}-{q_{1}^{b}} {q_{2}^{d}}+{q_{1}^{c}} {q_{2}^{a}}+{q_{1}^{d}} {q_{2}^{b}})j + ({q_{1}^{a}} {q_{2}^{d}}+{q_{1}^{b}} {q_{2}^{c}}-{q_{1}^{c}} {q_{2}^{b}}+{q_{1}^{d}} {q_{2}^{a}})k. \end{array} $$
(A4)

The quaternions space, or also called Hamilton space, is denoted \(\mathbb {H}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dad, N., En-nahnahi, N. & El Alaoui Ouatik, S. Quaternion Harmonic moments and extreme learning machine for color object recognition. Multimed Tools Appl 78, 20935–20959 (2019). https://doi.org/10.1007/s11042-019-7381-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7381-2

Keywords

Navigation