[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A survey on makespan minimization in semi-online environments

Published: 01 June 2018 Publication History

Abstract

We discuss variants of online scheduling on identical and uniformly related machines, where the objective is to minimize the makespan. All variants are such that some information regarding the input is provided in advance, and therefore these models are known as semi-online problems. Algorithms are analyzed with respect to the competitive ratio. We discuss the benefit arising from different kinds of available information and find that almost all variants allow one to reduce the competitive ratio significantly compared to the best possible competitive ratio for the corresponding pure online problem.

References

[1]
Albers, S. (2002) On randomized online scheduling. In Proceedings of the on 34th annual ACM symposium on theory of computing (STOC2002) (pp. 134-143).
[2]
Albers, S. (2013). Recent advances for a classical scheduling problem. In Proceedings of the 40th international colloquium on automata, languages, and programming, (ICALP2013), part II (pp. 4-14).
[3]
Albers, S. (1999). Better bounds for online scheduling. SIAM Journal on Computing, 29(2), 459-473.
[4]
Albers, S., & Hellwig, M. (2012). Semi-online scheduling revisited. Theoretical Computer Science, 443, 1-9.
[5]
Albers, S., & Hellwig, M. (2017a). On the value of job migration in online makespan minimization. Algorithmica, 79(2), 598-623.
[6]
Albers, S., & Hellwig, M. (2017b). Online makespan minimization with parallel schedules. Algorithmica, 78(2), 492-520.
[7]
Andrews, M., Goemans, M. X., & Zhang, L. (1999). Improved bounds for on-line load balancing. Algorithmica, 23(4), 278-301.
[8]
Angelelli, E. (2000). Semi on-line scheduling on two parallel processors with known sum and lower bound on the size of the tasks. Central European Journal of Operations Research, 8(4), 285-295.
[9]
Angelelli, E., Nagy, Á. B., Speranza, M. G., & Tuza, Z. (2004). The on-line multiprocessor scheduling problem with known sum of the tasks. Journal of Scheduling, 7(6), 421-428.
[10]
Angelelli, E., Nagy, Á. B., Speranza, M. G., & Tuza, Z. (2007). Semi online scheduling on three processors with known sum of the tasks. Journal of Scheduling, 10(4), 263-269.
[11]
Angelelli, E., Speranza, M. G., & Tuza, Z. (2003). Semi-on-line scheduling on two parallel processors with an upper bound on the items. Algorithmica, 37(4), 243-262.
[12]
Angelelli, E., Speranza, M. G., & Tuza, Z. (2006). Newbounds and algorithms for on-line scheduling: Two identical processors, known sum and upper bound on the tasks. Discrete Mathematics and Theoretical Computer Science, 8(1), 1-16.
[13]
Angelelli, E., Speranza, M. G., & Tuza, Z. (2008). Semi-online scheduling on two uniform processors. Theoretical Computer Science, 393(1-3), 211-219.
[14]
Aspnes, J., Azar, Y., Fiat, A., Plotkin, S. A., & Waarts, O. (1997). Online routing of virtual circuits with applications to load balancing and machine scheduling. Journal of the ACM, 44(3), 486-504.
[15]
Azar, Y., & Regev, O. (2001). On-line bin-stretching. Theoretical Computer Science, 268(1), 17-41.
[16]
Baram, G., & Tamir, T. (2014). Reoptimization of the minimum total flow-time scheduling problem. Sustainable Computing: Informatics and Systems, 4(4), 241-251.
[17]
Bar-Noy, A., Freund, A., & Naor, J. (2000). New algorithms for related machines with temporary jobs. Journal of Scheduling, 3(5), 259- 272.
[18]
Bartal, Y., Fiat, A., Karloff, H. J., & Vohra, R. (1995). New algorithms for an ancient scheduling problem. Journal of Computer and System Sciences, 51(3), 359-366.
[19]
Bartal, Y., Karloff, H. J., & Rabani, Y. (1994). A better lower bound for on-line scheduling. Information Processing Letters, 50(3), 113- 116.
[20]
Berman, P., Charikar, M., & Karpinski, M. (2000). On-line load balancing for related machines. Journal of Algorithms, 35(1), 108-121.
[21]
Böhm, M., Sgall, J., van Stee, R., & Vesel?, P. (2017a). Online bin stretching with three bins. Journal of Scheduling, 20(6), 601-621.
[22]
Böhm, M., Sgall, J., van Stee, R., & Vesel?, P. (2017b). A two-phase algorithm for bin stretching with stretching factor 1.5. Journal of Combinaorial. Optimization, 34(3), 810-828.
[23]
Boyar, J., Favrholdt, L. M., Kudahl, C., & Mikkelsen, J. W. (2016). Weighted online problems with advice. In Proceedings of the 27th international workshop on combinatorial algorithms (IWOCA2016) (pp. 179-190).
[24]
Cai, S.-Y., & Yang, Q.-F. (2011). Semi-online scheduling on two uniform machines with the known largest size. Journal of Combinatorial Optimization, 21(4), 393-408.
[25]
Cao, Q., Cheng, T., Wan, G., & Li, Y. (2012). Several semi-online scheduling problems on two identical machines with combined information. Theoretical Computer Science, 457, 35-44.
[26]
Cao, Q., & Liu, Z. (2010a). Online scheduling with reassignment on two uniform machines. Theoretical Computer Science, 411(31- 33), 2890-2898.
[27]
Cao, Q., & Liu, Z. (2010b). Semi-online scheduling with known maximum job size on two uniform machines. Journal of Combinatorial Optimization, 20(4), 369-384.
[28]
Cao, Q., & Liu, Z. (2016). Semi-online scheduling with bounded job sizes on two uniform machines. Theoretical Computer Science, 652, 1-17.
[29]
Cao, Q., Liu, Z., & Cheng, T. C. E. (2011). Semi-online scheduling with known partial information about job sizes on two identical machines. Theoretical Computer Science, 412(29), 3731-3737.
[30]
Cao, Q., & Wan, G. (2016). Semi-online scheduling with combined information on two identical machines in parallel. Journal of Combinatorial Optimization, 31(2), 686-695.
[31]
Chandrasekaran, R., Chen, B., Galambos, G., Narayanan, P. R., & van Vliet, A. (1997). A note on "an on-line scheduling heuristic with better worst case ratio than Graham's list scheduling". SIAM Journal on Computing, 26(3), 870-872.
[32]
Cheng, T. C. E., Kellerer, H., & Kotov, V. (2005). Semi-on-line multiprocessor scheduling with given total processing time. Theoretical Computer Science, 337(1-3), 134-146.
[33]
Cheng, T. C. E., Kellerer, H., & Kotov, V. (2012). Algorithms better than LPT for semi-online scheduling with decreasing processing times. Operations Research Letters, 40(5), 349-352.
[34]
Cheng, T. C. E., Ng, C. T., & Kotov, V. (2006). A new algorithm for online uniform-machine scheduling to minimize the makespan. Information Processing Letters, 99(3), 102-105.
[35]
Chen, X., Lan, Y., Benko, A., Dósa, G., & Han, X. (2011). Optimal algorithms for online scheduling with bounded rearrangement at the end. Theoretical Computer Science, 412(45), 6269-6278.
[36]
Chen, B., van Vliet, A., & Woeginger, G. J. (1994). New lower and upper bounds for on-line scheduling. Operations Research Letters, 16(4), 221-230.
[37]
Cho, Y., & Sahni, S. (1980). Bounds for list schedules on uniform processors. SIAM Journal on Computing, 9(1), 91-103.
[38]
Ding, N., Lan, Y., Chen, X., Dósa, G., Guo, H., & Han, X. (2014). Online minimum makespan scheduling with a buffer. International Journal of Foundations of Computer Science, 25(05), 525-536.
[39]
Dobson, G. (1984). Scheduling independent tasks on uniform processors. SIAM Journal on Computing, 13(4), 705-716.
[40]
Dohrau, J. (2015). Online makespan scheduling with sublinear advice. In Proceedings of the 41st international conference on current trends in theory and practice of computer science (SOFSEM2015) (pp. 177-188).
[41]
Dolgui, A., Kotov, V., Nekrashevich, A., & Quilliot, A. (2018). General parametric scheme for the online uniform machine scheduling problem with two different speeds. Information Processing Letters, 134, 18-23.
[42]
Dósa, G., & Epstein, L. (2010). Online scheduling with a buffer on related machines. Journal of Combinatorial Optimization, 20(2), 161-179.
[43]
Dósa, G., Fügenschuh, A., Tan, Z., Tuza, Z., & W?sek, K. (2018). Tight upper bounds for semi-online scheduling on two uniform machines with known optimum. Central European Journal of Operations Research, 26(1), 161-180.
[44]
Dósa, G., & He, Y. (2004). Semi-online algorithms for parallel machine scheduling problems. Computing, 72(3-4), 355-363.
[45]
Dósa, G., Speranza, M. G., & Tuza, Z. (2011). Two uniform machines with nearly equal speeds: Unified approach to known sum and known optimum in semi on-line scheduling. Journal of Combinatorial Optimization, 21(4), 458-480.
[46]
Dósa, G., Wang, Y., Han, X., & Guo, H. (2011). Online scheduling with rearrangement on two related machines. Theoretical Computer Science, 412(8-10), 642-653.
[47]
Ebenlendr, T., & Sgall, J. (2009). Optimal and online preemptive scheduling on uniformly related machines. Journal of Scheduling, 12(5), 517-527.
[48]
Ebenlendr, T., & Sgall, J. (2011). Semi-online preemptive scheduling: One algorithm for all variants. Theory of Computing Systems, 48(3), 577-613.
[49]
Ebenlendr, T., & Sgall, J. (2015). A lower bound on deterministic online algorithms for scheduling on related machines without preemption. Theory of Computing Systems, 56(1), 73-81.
[50]
Ehlers, T., & Jansen, K. (2013). Online-scheduling on identical machines with bounded migration. In Proceedings of the 15th international symposium on symbolic and numeric algorithms for scientific computing (SYNASC2013) (pp. 361-366). New York: IEEE.
[51]
Englert, M. (2012). An overview of some results for reordering buffers. Computer Science-Research and Development, 27, 217-223.
[52]
Englert, M., Özmen, D., & Westermann, M. (2014). The power of reordering for online minimum makespan scheduling. SIAM Journal on Computing, 43(3), 1220-1237.
[53]
Epstein, L. (2003). Bin stretching revisited. Acta Informatica, 39(2), 97-117.
[54]
Epstein, L., & Favrholdt, L. M. (2005). Optimal non-preemptive semi-online scheduling on two related machines. Journal of Algorithms, 57(1), 49-73.
[55]
Epstein, L., Noga, J., Seiden, S. S., Sgall, J., & Woeginger, G. J. (2001). Randomized online scheduling on two uniform machines. Journal of Scheduling, 4(2), 71-92.
[56]
Epstein, L., & Ye, D. (2007). Semi-online scheduling with "end of sequence" information. Journal of Combinatorial Optimization, 14(1), 45-61.
[57]
Faigle, U., Kern, W., & Turán, G. (1989). On the performance of online algorithms for partition problems. Acta Cybernetica, 9(2), 107- 119.
[58]
Fleischer, R., & Wahl, M. (2000). Online scheduling revisited. Journal of Scheduling, 3(6), 343-353.
[59]
Friesen, D. K. (1987). Tighter bounds for LPT scheduling on uniform processors. SIAM Journal on Computing, 16(3), 554-560.
[60]
Gabay, M., Brauner, N., & Kotov, V. (2017). Improved lower bounds for the online bin stretching problem. 4OR: Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 15(2), 183-199.
[61]
Gabay, M., Kotov, V., & Brauner, N. (2015). Online bin stretching with bunch techniques. Theoretical Computer Science, 602, 103-113.
[62]
Galambos, G., & Woeginger, G. J. (1993). An on-line scheduling heuristic with better worst case ratio than Graham's list scheduling. SIAM Journal on Computing, 22(2), 349-355.
[63]
Gatto, M., & Widmayer, P. (2011). On robust online scheduling algorithms. Journal of Scheduling, 14(2), 141-156.
[64]
Gonzalez, T. F., Ibarra, O. H., & Sahni, S. (1977). Bounds for LPT schedules on uniform processors. SIAM Journal on Computing, 6(1), 155-166.
[65]
Gormley, T., Reingold, N., Torng, E., & Westbrook, J. (2000). Generating adversaries for request-answer games. In Proceedings of the 11th annual ACM-SIAM symposium on discrete algorithms (SODA2000) (pp. 564-565).
[66]
Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45(9), 1563-1581.
[67]
Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics, 17(2), 416-429.
[68]
Han, F., Tan, Z., & Yang, Y. (2012). On the optimality of list scheduling for online uniform machines scheduling. Optimization Letters, 6(7), 1551-1571.
[69]
He, Y. (2000). The optimal on-line parallel machine scheduling. Computers and Mathematics with Applications, 39(7-8), 117-121.
[70]
He, Y., & Dósa, G. (2005). Semi-online scheduling jobs with tightly-grouped processing times on three identical machines. Discrete Applied Mathematics, 150(1-3), 140-159.
[71]
He, Y., & Dósa, G. (2007). Extension of algorithm list scheduling for a semi-online scheduling problem. Central European Journal of Operations Research, 15(1), 97-104.
[72]
He, Y., Yang, Q., Tan, Z., & Yao, E. (2002). Algorithms for semi on-line multiprocessor scheduling problems. Journal of Zhejiang University-Science A, 3(1), 60-64.
[73]
He, Y., & Zhang, G. (1999). Semi on-line scheduling on two identical machines. Computing, 62(3), 179-187.
[74]
Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM, 34(1), 144-162.
[75]
Je?, ?., Schwartz, J., Sgall, J., & Békési, J. (2013). Lower bounds for online makespan minimization on a small number of related machines. Journal of Scheduling, 16(5), 539-547.
[76]
Karger, D. R., Phillips, S. J., & Torng, E. (1996). A better algorithm for an ancient scheduling problem. Journal of Algorithms, 20(2), 400-430.
[77]
Kellerer, H., & Kotov, V. (2013). An efficient algorithm for bin stretching. Operations Research Letters, 41(4), 343-346.
[78]
Kellerer, H., Kotov, V., & Gabay, M. (2015). An efficient algorithm for semi-online multiprocessor scheduling with given total processing time. Journal of Scheduling, 18(6), 623-630.
[79]
Kellerer, H., Kotov, V., Speranza, M. G., & Tuza, Z. (1997). Semi on-line algorithms for the partition problem. Operations Research Letters, 21(5), 235-242.
[80]
Kovács, A. (2005). Fast monotone 3-approximation algorithm for scheduling related machines. In Proceedings of the 13th Annual European Symposium on Algorithms (ESA2005) (pp. 616-627).
[81]
Kovács, A. (2009). Tighter approximation bounds for LPT scheduling in two special cases. Journal of Discrete Algorithms, 7(3), 327-340.
[82]
Kovács, A. (2010). New approximation bounds for LPT scheduling. Algorithmica, 57(2), 413-433.
[83]
Lee, K., Leung, J. Y., & Pinedo, M. L. (2013). Makespan minimization in online scheduling with machine eligibility. Annals of Operations Research, 204(1), 189-222.
[84]
Lee, K., & Lim, K. (2013). Semi-online scheduling problems on a small number of machines. Journal of Scheduling, 16(5), 461-477.
[85]
Li, S., Zhou, Y., Sun, G., & Chen, G. (2007) Study on parallel machine scheduling problem with buffer. In Proceedings of the 2nd international multisymposium on computer and computational sciences (IMSCCS2007) (pp. 278-281).
[86]
Li, R., & Shi, L. (1998). An on-line algorithm for some uniform processor scheduling. SIAM Journal on Computing, 27(2), 414-422.
[87]
Liu, W., Sidney, J. B., & van Vliet, A. (1996). Ordinal algorithms for parallel machine scheduling. Operations Research Letters, 18(5), 223-232.
[88]
Liu, M., Xu, Y., Chu, C., & Zheng, F. (2009). Online scheduling on two uniform machines to minimize the makespan. Theoretical Computer Science, 410(21-23), 2099-2109.
[89]
Min, X., Liu, J., & Wang, Y. (2011). Optimal semi-online algorithms for scheduling problems with reassignment on two identical machines. Information Processing Letters, 111(9), 423-428.
[90]
Mireault, P., Orlin, J. B., & Vohra, R.V. (1997). A parametric worst case analysis of the LPT heuristic for two uniform machines. Operations Research, 45, 116-125.
[91]
Motwani, R., Phillips, S. J., & Torng, E. (1994). Nonclairvoyant scheduling. Theoretical Computer Science, 130(1), 17-47.
[92]
Musitelli, A., & Nicoletti, J.-M. (2011). Competitive ratio of list scheduling on uniform machines and randomized heuristics. Journal of Scheduling, 14(1), 89-101.
[93]
Ng, C. T., Tan, Z., He, Y., & Cheng, T. C. E. (2009). Two semi-online scheduling problems on two uniform machines. Theoretical Computer Science, 410(8-10), 776-792.
[94]
Renault, M. P., Rosén, A., & van Stee, R. (2015). Online algorithms with advice for bin packing and scheduling problems. Theoretical Computer Science, 600, 155-170.
[95]
Rudin III, J.F. (2001) Improved bounds for the on-line scheduling problem. PhD thesis, The University of Texas at Dallas.
[96]
Rudin, J. F, I. I. I., & Chandrasekaran, R. (2003). Improved bounds for the online scheduling problem. SIAM Journal on Computing, 32(3), 717-735.
[97]
Sanders, P., Sivadasan, N., & Skutella, M. (2009). Online scheduling with bounded migration. Mathematics of Operations Research, 34(2), 481-498.
[98]
Schieber, B., Shachnai, H., Tamir, G., & Tamir, T. (2018). A theory and algorithms for combinatorial reoptimization. Algorithmica, 80(2), 576-607.
[99]
Seiden, S. S., Sgall, J., & Woeginger, G. J. (2000). Semi-online scheduling with decreasing job sizes. Operations Research Letters, 27(5), 215-221.
[100]
Sgall, J. (1998). On-line scheduling. In A. Fiat & G. J. Woeginger (Eds.), Online algorithms, the state of the art (pp. 196-231). Berlin: Springer.
[101]
Shmoys, D.B., Wein, J., & Williamson, D. P. (1995). Scheduling parallel machines on-line. SIAM Jounral on Computing, 24(6), 1313-1331.
[102]
Sun, H., & Fan, R. (2013). Improved semi-online makespan scheduling with a reordering buffer. Information Processing Letters, 113(12), 434-439.
[103]
Tan, Z., & He, Y. (2001). Semi-on-line scheduling with ordinal data on two uniform machines. Operations Research Letters, 28(5), 221- 231.
[104]
Tan, Z., & He, Y. (2002). Semi-on-line problems on two identical machines with combined partial information. Operations Research Letters, 30(6), 408-414.
[105]
Tan, Z., & He, Y. (2007). Semi-online scheduling problems on two identical machines with inexact partial information. Theoretical Computer Science, 377(1-3), 110-125.
[106]
Tan, Z., & Li, R. (2015). Pseudo lower bounds for online parallel machine scheduling. Operations Research Letters, 43(5), 489- 494.
[107]
Tan, Z., & Yu, S. (2008). Online scheduling with reassignment. Operations Research Letters, 36(2), 250-254.
[108]
Tan, Z., & Zhang, A. (2013). Online and semi-online scheduling. In P. M. Pardalos, D.-Z. Du, & R. Graham (Eds.), Handbook of combinatorial optimization (pp. 2191-2252). Berlin: Springer.
[109]
Wang, Y., Benko, A., Chen, X., Dósa, G., Guo, H., Han, X., et al. (2012). Online scheduling with one rearrangement at the end: Revisited. Information Processing Letters, 112(16), 641-645.
[110]
Westbrook, J. (2000). Load balancing for response time. Jounral of Algorithms, 35(1), 1-16.
[111]
Wu, Y., Tan, Z., & Yang, Q. (2007). Optimal semi-online scheduling algorithms on a small number of machines. In Proceedings of the first international symposium on combinatorics, algorithms, probabilistic and experimental methodologies (ESCAPE2007) (pp. 504-515).
[112]
Wu, Y., Yang, Q., & Huang, Y. (2010). Semi-online bin stretching with non-increasing job processing times. In Proceedings of the international conference on computer application and system modeling (ICCASM2010) (Vol. 10, pp. V10-562-V10-566). New York: IEEE.
[113]
Zhang, G. (1997). A simple semi on-line algorithm for P2//Cmax with a buffer. Information Processing Letters, 61, 145-148.
[114]
Zhang, G., & Ye, D. (2002). A note on on-line scheduling with partial information. Computers and Mathematics with Applications, 44(3-4), 539-543.

Cited By

View all
  • (2022)Semi-Online Multi-Machine with Restart Scheduling for Integrated Edge and Cloud Computing SystemsProceedings of the 51st International Conference on Parallel Processing10.1145/3545008.3545059(1-13)Online publication date: 29-Aug-2022
  • (2022)Competitive analysis of online machine rental and online parallel machine scheduling problems with workload fenceJournal of Combinatorial Optimization10.1007/s10878-022-00882-x44:2(1060-1076)Online publication date: 1-Sep-2022
  • (2022)Machine Covering in the Random-Order ModelAlgorithmica10.1007/s00453-022-01011-085:6(1560-1585)Online publication date: 23-Jul-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Scheduling
Journal of Scheduling  Volume 21, Issue 3
June 2018
116 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 June 2018

Author Tags

  1. Bin stretching
  2. Competitive ratio
  3. Known total size
  4. Reassignment
  5. Reordering buffers
  6. Semi-online algorithms

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Semi-Online Multi-Machine with Restart Scheduling for Integrated Edge and Cloud Computing SystemsProceedings of the 51st International Conference on Parallel Processing10.1145/3545008.3545059(1-13)Online publication date: 29-Aug-2022
  • (2022)Competitive analysis of online machine rental and online parallel machine scheduling problems with workload fenceJournal of Combinatorial Optimization10.1007/s10878-022-00882-x44:2(1060-1076)Online publication date: 1-Sep-2022
  • (2022)Machine Covering in the Random-Order ModelAlgorithmica10.1007/s00453-022-01011-085:6(1560-1585)Online publication date: 23-Jul-2022
  • (2021)A New Lower Bound for Classic Online Bin PackingAlgorithmica10.1007/s00453-021-00818-783:7(2047-2062)Online publication date: 1-Jul-2021
  • (2021)Scheduling with Testing on Multiple Identical Parallel MachinesAlgorithms and Data Structures10.1007/978-3-030-83508-8_3(29-42)Online publication date: 9-Aug-2021
  • (2019)A New Lower Bound for Classic Online Bin PackingApproximation and Online Algorithms10.1007/978-3-030-39479-0_2(18-28)Online publication date: 12-Sep-2019

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media