[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Semi-online scheduling problems on a small number of machines

Published: 01 October 2013 Publication History

Abstract

We consider the semi-online parallel machine scheduling problem of minimizing the makespan given a priori information: the total processing time, the largest processing time, the combination of the previous two or the optimal makespan. We propose a new algorithm that can be applied to the problem with the known total or largest processing time and prove that it has improved competitive ratios for the cases with a small number of machines. Improved lower bounds of the competitive ratio are also provided by presenting adversary lower bound examples.

References

[1]
Albers, S. (1999). Better bounds for online scheduling. SIAM Journal on Computing, 29, 459-473.
[2]
Albers, S., & Hellwig, M. (2012). Semi-online scheduling revisited. Theoretical Computer Science, 443, 1-9.
[3]
Angelelli, E., Nagy, A. B., Speranza, M. G., & Zs, Tuza. (2004). The on-line multiprocessor scheduling problem with known sum of the tasks. Journal of Scheduling, 7, 421-428.
[4]
Angelelli, E., Speranza, M. G., & Zs, Tuza. (2007). Semi on-line scheduling on three processors with known sum of the tasks. Journal of Scheduling, 10, 263-269.
[5]
Azar, Y., & Regev, O. (2001). On-line bin-stretching. Theoretical Computer Science, 268, 17-41.
[6]
Bartal, Y., Fiat, A., Karloff, H., & Vohra, R. (1995). New algorithms for an ancient scheduling problem. Journal of Computer and System Sciences, 51, 359-366.
[7]
Bartal, Y., Karloff, H., & Rabani, Y. (1994). A better lower bound for on-line scheduling. Information Processing Letters, 50, 113-116.
[8]
Cai, S. Y. (2002). Semi online scheduling on three identical machines. Journal of Wenzhou Teachers College, 23, 1-3. (In Chinese).
[9]
Chang, S. Y., Hwang, H.-C., & Park, J. (2005). Semi-on-line parallel machines scheduling under known total and largest processing times. Journal of the Operations Research Society of Japan, 48, 1-8.
[10]
Chen, B., Vliet, A., & Woeginger, G. J. (1994). New lower and upper bounds for on-line scheduling. Operations Research Letters, 16, 221-230.
[11]
Cheng, T. C. E., Kellerer, H., & Kotov, V. (2005). Semi-on-line multiprocessor scheduling with given total processing time. Theoretical Computer Science, 337, 134-146.
[12]
Faigle, U., Kern, W., & Turan, G. (1989). On the performance of on-line algorithms for partition problems. Acta Cybernetica, 9, 107-119.
[13]
Fleischer, R., & Wahl, M. (2000). Online scheduling revisited. Journal of Scheduling, 3, 343-353.
[14]
Galambos, G., & Woeginger, G. J. (1993). An on-line scheduling heuristic with better worst case ratio than Graham's list scheduling. SIAM Journal on Computing, 22, 349-355.
[15]
Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45, 1563-1581.
[16]
He, Y., & Zhang, G. C. (1999). Semi online scheduling on two identical machines. Computing, 62, 179-187.
[17]
Hua, R., Hu, J., & Lu, L. (2006). A semi-online algorithm for parallel machine scheduling on three machines. Journal of Industrial Engineering and, Engineering Management, 20 (in Chinese).
[18]
Karger, D., Phillips, S., & Torng, E. (1996). A better algorithm for an ancient scheduling problem. Journal of Algorithms, 20, 400-430.
[19]
Kellerer, H., Kotov, V., Speranza, M. G., & Tuza, Zs. (1997). Semi online algorithms for the partitioning problem. Operations Research Letters, 21, 235-242.
[20]
Rudin, J. F. (2001). Improved bounds for the on-line scheduling problem. Ph.D. Thesis, The University of Texas, Dallas.
[21]
Rudin, J. F., & Chandrasekaran, R. (2003). Improved bounds for the online scheduling problem. SIAM Journal on Computing, 32, 717- 735.
[22]
Tan, Z. Y., & He, Y. (2002). Semi-on-line problems on two identical machines with combined partial information. Operations Research Letters, 30, 408-414.
[23]
Wu, Y., Huang, Y., & Yang, Q. F. (2008). Semi-online multiprocessor scheduling with the longest given processing time. Journal of Zhejiang University: Science Edition, 35, 23-26. (In Chinese).
[24]
Wu, Y., Tan, Z., & Yang, Q. (2007). Optimal semi-online scheduling algorithms on a small number of machines. Lecture Notes in Computer Science, 4614, 504-515.

Cited By

View all
  • (2023)Multi-agent online scheduling: MMS allocations for indivisible itemsProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3620197(42506-42516)Online publication date: 23-Jul-2023
  • (2022)Online Early Work Maximization on Three Hierarchical Machines with a Common Due DateFrontiers of Algorithmic Wisdom10.1007/978-3-031-20796-9_8(99-109)Online publication date: 15-Aug-2022
  • (2018)A survey on makespan minimization in semi-online environmentsJournal of Scheduling10.1007/s10951-018-0567-z21:3(269-284)Online publication date: 24-Dec-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Scheduling
Journal of Scheduling  Volume 16, Issue 5
October 2013
103 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 October 2013

Author Tags

  1. Competitive ratio
  2. Lower bound example
  3. Semi-online scheduling

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Multi-agent online scheduling: MMS allocations for indivisible itemsProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3620197(42506-42516)Online publication date: 23-Jul-2023
  • (2022)Online Early Work Maximization on Three Hierarchical Machines with a Common Due DateFrontiers of Algorithmic Wisdom10.1007/978-3-031-20796-9_8(99-109)Online publication date: 15-Aug-2022
  • (2018)A survey on makespan minimization in semi-online environmentsJournal of Scheduling10.1007/s10951-018-0567-z21:3(269-284)Online publication date: 24-Dec-2018

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media