[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Prediction Techniques for Dynamic Imaging with Online Primal–Dual Methods

Published: 10 October 2024 Publication History

Abstract

Online optimisation facilitates the solution of dynamic inverse problems, such as image stabilisation, fluid flow monitoring, and dynamic medical imaging. In this paper, we improve upon previous work on predictive online primal–dual methods on two fronts. Firstly, we provide a more concise analysis that symmetrises previously unsymmetric regret bounds, and relaxes previous restrictive conditions on the dual predictor. Secondly, based on the latter, we develop several improved dual predictors. We numerically demonstrate their efficacy in image stabilisation and dynamic positron emission tomography.

References

[1]
Tico, M.: Digital image stabilization. In: Zaher, A. (eds.) Advances in Signal Processing, InTechOpen (2009)
[2]
Valkonen T Predictive online optimisation with applications to optical flow J. Math. Imaging Vision 2021 63 3 329-355 arXiv: 2002.03053
[3]
Zhou, J., Hubel, P., Tico, M., Schulze, A.N., Toft, R.: Image registration methods for still image stabilization. US Patent 9, 384–552 (2016)
[4]
Benning M, Gladden L, Holland D, Schönlieb C-B, and Valkonen T Phase reconstruction from velocity-encoded MRI measurements—a survey of sparsity-promoting variational approaches J. Magn. Resonance 2014 238 26-43
[5]
Holland DJ, Malioutov DM, Blake A, Sederman AJ, and Gladden LF Reducing data acquisition times in phase-encoded velocity imaging u sing compressed sensing J. Magn. Resonance 2010 203 236-46
[6]
Hunt A Weighing without touching: applying electrical capacitance tomography to mass flowrate measurement in multiphase flows Measurement Control 2014 47 1 19-25
[7]
Lipponen A, Seppänen A, and Kaipio JP Nonstationary approximation error approach to imaging of three-dimensional pipe flow: experimental evaluation Meas. Sci. Technol. 2011 22 10
[8]
Bousse A, Bertolli O, Atkinson D, Arridge S, Ourselin S, Hutton BF, and Thielemans K Maximum-likelihood joint image reconstruction/motion estimation in attenuation-corrected respiratory gated PET/CT using a single attenuation map IEEE Trans. Med. Imaging 2016 35 1 217-228
[9]
Burger M, Dirks H, Frerking L, Hauptmann A, Helin T, and Siltanen S A variational reconstruction method for undersampled dynamic x-ray tomography based on physical motion models Inverse Prob. 2017 33 12
[10]
Iwao Y, Akamatsu G, Tashima H, Takahashi M, and Yamaya T Brain pet motion correction using 3D face-shape model: the first clinical study Ann. Nucl. Med. 2022 36 10 904-912
[11]
Natterer F The mathematics of computerized tomography Soc. Indus. Appl. Math. 2001
[12]
Kar, S., Moura, J.M.: Gossip and distributed Kalman filtering: weak consensus under weak detectability. IEEE Trans. Signal Process. fig. e 59(4), 1766–1784 (2010)
[13]
Olfati-Saber R, Fax JA, and Murray RM Consensus and cooperation in networked multi-agent systems Proc. IEEE 2007 95 1 215-233
[14]
Belmega, E.V., Mertikopoulos, P., Negrel, R., Sanguinetti, L.: Online convex optimization and no-regret learning: Algorithms, guarantees and applications . arXiv:8040.4529 (2018)
[15]
Hazan E et al. Introduction to online convex optimization Found. Trends Optim. 2016 2 3–4 157-325
[16]
Orabona, F.: A Modern Introduction to Online Learning (2020). arXiv:1912.13213
[17]
Simonetto A, Dall’Anese E, Paternain S, Leus G, and Giannakis GB Time-varying convex optimization: time-structured algorithms and applications Proc. IEEE 2020 108 11 2032-2048
[18]
Bernstein A, Dall’Anese E, and Simonetto A Online primal-dual methods with measurement feedback for time-varying convex optimization IEEE Trans. Signal Process. 2019 67 8 1978-1991
[19]
Tang Y, Dall’Anese E, Bernstein A, and Low S Running primal-dual gradient method for time-varying nonconvex problems SIAM J. Control. Optim. 2022 60 4 1970-1990
[20]
Zhang Y, Dall’Anese E, and Hong M Online proximal-admm for time-varying constrained convex optimization IEEE Trans. Signal Inform. Process. Netw. 2021 7 144-155
[21]
Chang, T.-J., Shahrampour, S.: On online optimization: dynamic regret analysis of strongly convex and smooth problems. In: Proceedings of the AAAI conference on artificial intelligence, vol. 35, pp. 6966–6973 (2021)
[22]
Nonhoff M and Müller MA Online gradient descent for linear dynamical systems IFAC-PapersOnLine 2020 53 2 945-952
[23]
Zhang L, Liu H, and Xiao X Regrets of proximal method of multipliers for online non-convex optimization with long term constraints J. Global Optim. 2023 85 1 61-80
[24]
Hall, E., Willett, R.: Dynamical models and tracking regret in online convex programming. In: Proceedings of the 30th international conference on machine learning, pp. 579–587. PMLR, Atlanta, Georgia, USA (2013). http://proceedings.mlr.press/v28/hall13.html
[25]
Simonetto A and Dall’Anese E Prediction-correction algorithms for time-varying constrained optimization IEEE Trans. Signal Process. 2017 65 20 5481-5494
[26]
Simonetto A, Mokhtari A, Koppel A, Leus G, and Ribeiro A A class of prediction-correction methods for time-varying convex optimization IEEE Trans. Signal Process. 2016 64 17 4576-4591
[27]
Zhang, Y., Ravier, R.J., Tarokh, V., Zavlanos, M.M.: Distributed Online Convex Optimization with Improved Dynamic Regret (2019). arXiv:1911.05127
[28]
Simonetto A Dual prediction-correction methods for linearly constrained time-varying convex programs IEEE Trans. Automat. Control 2018 64 8 3355-3361
[29]
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011).
[30]
Valkonen T Testing and non-linear preconditioning of the proximal point method Appl. Math. Optim. 2020 82 2 591-636
[31]
Valkonen, T.: First-order primal-dual methods for nonsmooth nonconvex optimisation. In: Chen, K., Schönlieb, C.-B., Tai, X.-C., Younes, L. (eds.) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer (2021). arXiv:1910.00115
[32]
Clason, C., Valkonen, T.: Introduction to Nonsmooth Analysis and Optimization. Work in Progress (2020). arXiv:2001.00216
[33]
He B and Yuan X Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective SIAM J. Imaging Sci. 2012 5 1 119-149
[34]
Franzen, R.: Kodak Lossless True Color Image Suite. PhotoCD PCD0992. Lossless, True Color Images Released by the Eastman Kodak Company (1999). http://r0k.us/graphics/kodak/
[35]
Valkonen T, Dizon N, and Jauhiainen J Predictive online optimisation codes for dynamic inverse imaging problems Softw. Zenodo 2024
[36]
Belzunce MA and Reader AJ Technical note: ultra high-resolution radiotracer-specific digital pet brain phantoms based on the bigbrain atlas Med. Phys. 2020 47 8 3356-3362
[37]
Chambolle A An algorithm for total variation minimization and applications J. Math. Imaging Vision 2004 20 1 89-97
[38]
Jensen B and Valkonen T A nonsmooth primal-dual method with interwoven PDE constraint solver Comput. Optim. Appl. 2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision  Volume 66, Issue 6
Dec 2024
184 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 10 October 2024
Accepted: 10 September 2024
Received: 03 May 2024

Author Tags

  1. Online
  2. Primal–dual
  3. Optimization
  4. Dynamic imaging

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media