[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams

Published: 01 June 2019 Publication History

Abstract

Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve system that satisfies several practical axioms, and thus our study covers many concrete order-k Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in $$O(k(n-k)\log ^2 n +n\log ^3 n)$$O(k(n-k)log2n+nlog3n) steps, where $$O(k(n-k))$$O(k(n-k)) is the number of faces in the worst case. This result applies to disjoint line segments in the $$L_p$$Lp norm, convex polygons of constant size, points in the Karlsruhe metric, and so on. In fact, a running time with a polylog factor to the number of faces was only achieved for point sites in the $$L_1$$L1 or Euclidean metric before.

References

[1]
Agarwal, P.K., de Berg, M., Matousek, J., Schwarzkopf, O.: Constructing levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput. 27(3), 654---667 (1998)
[2]
Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Int. J. Comput. Geom. Appl. 2(4), 363---381 (1992)
[3]
Bohler, C., Cheilaris, P., Klein, R., Liu, C.-H., Papadopoulou, E., Zavershynskyi, M.: On the complexity of higher order abstract Voronoi diagrams. Comput. Geom. 48(8), 539---551 (2015)
[4]
Bohler, C., Klein, R.: Abstract Voronoi diagrams with disconnected regions. Int. J. Comput. Geom. Appl. 24(4), 347---372 (2014)
[5]
Bohler, C., Klein, R., Liu, C.-H.: An efficient randomized algorithm for higher-order abstract Voronoi diagrams. In: Proceeding of the 32nd International Symposium on Computational Geometry (SoCG 2016), pp. 21:1---21:15 (2016)
[6]
Bohler, C., Liu, C.-H., Papadopoulou, E., Zavershynskyi, M.: A randomized divide and conquer algorithm for higher-order abstract Voronoi diagrams. Comput. Geom. 59, 26---38 (2016)
[7]
Boissonnat, J.-D., Devillers, O., Teillaud, M.: A semidynamic construction of higher-order Voronoi diagrams and its randomized analysis. Algorithmica 9(4), 329---356 (1993)
[8]
Chan, T.M.: Random sampling, halfspace range reporting, and construction of ($$\le k$$≤k)-levels in three dimensions. SIAM J. Comput. 30(2), 561---575 (2000)
[9]
Chan, T.M., Tsakalidis, K.: Optimal deterministic algorithms for 2-d and 3-d shallow cuttings. Discrete Comput. Geom. 56(4), 866---881 (2016)
[10]
Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485---524 (1991)
[11]
Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing $$k$$k-th-order Voronoi diagrams. IEEE Trans. Comput. 36(11), 1349---1354 (1987)
[12]
Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M., Snoeyink, J.: Computing a face in an arrangement of line segments and related problems. SIAM J. Comput. 22(6), 1286---1302 (1993)
[13]
Chew, L.P., Scot Drysdale, R.L.: Voronoi diagrams based on convex distance functions. In: Proceedings of the First Annual Symposium on Computational Geometry, (SoCG 1985), pp. 235---244 (1985)
[14]
Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete Comput. Geom. 2, 195---222 (1987)
[15]
Clarkson, K.L., Shor, P.W.: Application of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387---421 (1989)
[16]
Gemsa, A., Lee, D.T., Liu, C.-H., Wagner, D.: Higher order city Voronoi diagrams. In: Proceedings of the 13th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 59---70 (2012)
[17]
Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. Discrete Comput. Geom. 2, 127---151 (1987)
[18]
Klein, R.: Voronoi diagrams in the Moscow metric (extended abstract). In: Proceedings of the 14th International Workshop of Graph-Theoretic Concepts in Computer Science (WG88), pp. 434---441 (1988)
[19]
Klein, R.: Concrete and Abstract Voronoi Diagrams. Volume 400 of Lecture Notes in Computer Science. Springer, Berlin (1989)
[20]
Klein, R., Langetepe, E., Nilforoushan, Z.: Abstract Voronoi diagrams revisited. Comput. Geom. 42(9), 885---902 (2009)
[21]
Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Comput. Geom. 3, 157---184 (1993)
[22]
Lee, D.T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. 31(6), 478---487 (1982)
[23]
Liu, C.-H., Lee, D.T.: Higher-order geodesic Voronoi diagrams in a polygonal domain with holes. In: Proceedings of the Twenty-Fourth Annual Symposium on Discrete Algorithms (SODA), pp. 1633---1645 (2013)
[24]
Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int. J. Comput. Geom. Appl. 11(6), 583---616 (2001)
[25]
Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs (1994)
[26]
Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40(2), 63---82 (2004)
[27]
Papadopoulou, E., Zavershynskyi, M.: On higher order Voronoi diagrams of line segments. Algorithmica 74(1), 415---439 (2016)
[28]
Ramos, E.A.: On range reporting, ray shooting and k-level construction. In: Proceedings of the Fifteenth Annual Symposium on Computational Geometry (SoCG), pp. 390---399 (1999)
[29]
Tarjan, R.E., Van Wyk, C.J.: An $$O(n \log \log n)$$O(nloglogn)-time algorithm for triangulating a simple polygon. SIAM J. Comput. 17(1), 143---178 (1988)

Cited By

View all
  • (2024)The edge labeling of higher order Voronoi diagramsJournal of Global Optimization10.1007/s10898-024-01386-090:2(515-549)Online publication date: 1-Oct-2024
  • (2023)Deletion in Abstract Voronoi Diagrams in Expected Linear Time and Related ProblemsDiscrete & Computational Geometry10.1007/s00454-022-00463-z69:4(1040-1078)Online publication date: 1-Jun-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Algorithmica
Algorithmica  Volume 81, Issue 6
Jun 2019
530 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 June 2019

Author Tags

  1. Abstract Voronoi diagrams
  2. Computational geometry
  3. Order-k Voronoi diagrams
  4. Randomized geometric algorithms

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)The edge labeling of higher order Voronoi diagramsJournal of Global Optimization10.1007/s10898-024-01386-090:2(515-549)Online publication date: 1-Oct-2024
  • (2023)Deletion in Abstract Voronoi Diagrams in Expected Linear Time and Related ProblemsDiscrete & Computational Geometry10.1007/s00454-022-00463-z69:4(1040-1078)Online publication date: 1-Jun-2023

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media