[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

The Higher-Order Voronoi Diagram of Line Segments

Published: 01 January 2016 Publication History

Abstract

The order-$$k$$k Voronoi diagram of line segments has properties surprisingly different from its counterpart for points. For example, a single order-$$k$$k Voronoi region may consist of $$\varOmega (n)$$Ω(n) disjoint faces. In this paper, we analyze the structural properties of this diagram and show that its combinatorial complexity is $$O(k(n-k))$$O(k(n-k)), for $$n$$n non-crossing line segments, despite the presence of disconnected regions. The same bound holds for $$n$$n intersecting line segments, for $$k\ge n/2$$k n/2. We also consider the order-$$k$$k Voronoi diagram of line segments that form a planar straight-line graph, and augment the definition of an order-$$k$$k diagram to cover sites that are not disjoint. On the algorithmic side, we extend the iterative approach to construct this diagram, handling complications caused by the presence of disconnected regions. All bounds are valid in the general $$L_p$$Lp metric, $$1\le p\le \infty $$1≤p≤ . For non-crossing segments in the $$L_\infty $$L and $$L_1$$L1 metrics, we show a tighter $$O((n-k)^2)$$O((n-k)2) bound for $$k>n/2$$k>n/2.

References

[1]
Agarwal, P.K., de Berg, M., Matousek, J., Schwarzkopf, O.: Constructing levels in arrangements and higher-order Voronoi diagrams. SIAM J. Comput. 27(3), 654---667 (1998)
[2]
Aggarwal, A., Guibas, L.J., Saxe, J.B., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4, 591---604 (1989)
[3]
Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Int. J. Comput. Geom. Appl. 2(4), 363---381 (1992)
[4]
Aurenhammer, F., Drysdale, R.L.S., Krasser, H.: Farthest line segment Voronoi diagrams. Inf. Process. Lett. 100(6), 220---225 (2006)
[5]
Aurenhammer, F., Klein, K., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations, World Scientific, 1---337, ISBN 978-981-4447-63-8, pp. I-VIII (2013)
[6]
Bohler, C., Klein, R., Liu, C.-H., Papadopoulou, E., Cheilaris, P., Zavershynskyi, M.: On the complexity of higher order abstract Voronoi diagrams. In: Fomin, F.V., et al. (eds.) ICALP 2013. Lecture Notes in Computer Science, vol. 7965, pp. 208---219. Springer, Heidelberg (2013)
[7]
Bohler, C., Liu, C.-H., Papadopoulou, E., Zavershynskyi, M.: A randomized divide and conquer algorithm for higher-order abstract Voronoi diagrams. 25th International Symposium on Algorithms and Computation, ISAAC 2014. Lecture Notes in Computer Science, vol. 8889, (to appear)
[8]
Chan, T.M.: Random sampling, halfspace range reporting, and construction of $$\le k$$≤k-levels in three dimensions. SIAM J. Comput. 30(2), 561---575 (2000)
[9]
Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order Voronoi diagrams. IEEE Trans. Comput. 36(11), 1349---1454 (1987)
[10]
Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.-S.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234---247 (2011)
[11]
Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete Comput. Geom. 2, 195---222 (1987)
[12]
Clarkson, K.L., Shor, P.W.: Application of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387---421 (1989)
[13]
Edelsbrunner, H.: The complexity of higher-order Voronoi diagrams. In: Edelsbrunner, H.: Algorithms in Combinatorial Geometry, pp. 319---324. EATCS monographs on theoretical computer science. Springer, Nre York (1987)
[14]
Edelsbrunner, H., Maurer, H.A., Preparata, F.P., Rosenberg, A.L., Welzl, E., Wood, D.: Stabbing line segments. BIT 22(3), 274---281 (1982)
[15]
Kirkpatrick, D.G.: Efficient computation of continuous skeletons. FOCS: 18---27, 20th Annual Symposium on Foundations of Computer Science (1979)
[16]
Klein, R., Langetepe, E., Nilforoushan, Z.: Abstract Voronoi diagrams revisited. Comput. Geom. 42(9), 885---902 (2009)
[17]
Lee, D.T.: Two-dimensional Voronoi diagrams in the $$\text{ L }_{p}$$Lp-metric. J. ACM 27(4), 604---618 (1980)
[18]
Lee, D.T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. 31(6), 478---487 (1982)
[19]
Liu, C.-H., Papadopoulou, E., Lee, D.T.: The k-nearest-neighbor Voronoi diagram revisited. Algorithmica (2013).
[20]
Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int. J. Comput. Geom. Appl. 11(6), 583---616 (2001)
[21]
Papadopoulou, E.: Net-aware critical area extraction for opens in VLSI circuits via higher-order Voronoi diagrams. IEEE Trans. CAD Integr. Circuits Syst. 30(5), 704---717 (2011)
[22]
Papadopoulou, E., Dey, S.K.: On the farthest line segment Voronoi diagram. Int. J. Comput. Geom. Appl. 23(6), 443---460 (2013)
[23]
Papadopoulou, E., Zavershynskyi, M.Z.: On higher order Voronoi diagrams of line segments. In: Chao, K.-M. et al. (eds.) ISAAC 2012, Lecture Notes in Computer Science, 7676, 177---186 (2012)
[24]
Ramos, E.A.: On range reporting, ray shooting and k-level construction. In: Proceedings of 15th Annual Symposium on Computational Geometry, 390---399 (1999)
[25]
Rappaport, D.: Computing the furthest site Voronoi diagram for a set of discs (preliminary report). In: Dehne, F.K.H.A., et al. (eds.) WADS 1989. Lecture Notes in Computer Science, vol. 382, pp. 57---66. Springer, Heidelberg (1989)
[26]
Rosenberger, H.: Order-k Voronoi diagrams of sites with additive weights in the plane. Algorithmica 6(4), 490---521 (1991)
[27]
Seidel, R.: The nature and meaning of perturbations in geometric computing. Discrete Comput. Geom. 19(1), 1---17 (1998)
[28]
Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)
[29]
Sharir, M.: The Clarkson---Shor technique revisited and extended. Comb. Probab. Comput. 12(2), 191---201 (2003)
[30]
Zavershynskyi, M., Papadopoulou, E.: A sweepline algorithm for higher order Voronoi diagrams. In: Proceedings of 10th International Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2013. IEEE-CS, pp. 16---22 (2013)

Cited By

View all
  • (2024)Unbounded Regions of High-Order Voronoi Diagrams of Lines and Line Segments in Higher DimensionsDiscrete & Computational Geometry10.1007/s00454-023-00492-272:3(1304-1332)Online publication date: 1-Oct-2024
  • (2022)Measuring fault tolerance in IoT mesh networks using Voronoi diagramJournal of Network and Computer Applications10.1016/j.jnca.2021.103297199:COnline publication date: 1-Mar-2022
  • (2021)Enumerating Maximal Shared Risk Link Groups of Circular Disk Failures Hitting k NodesIEEE/ACM Transactions on Networking10.1109/TNET.2021.307010029:4(1648-1661)Online publication date: 21-Apr-2021
  • Show More Cited By
  1. The Higher-Order Voronoi Diagram of Line Segments

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Algorithmica
    Algorithmica  Volume 74, Issue 1
    January 2016
    557 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 January 2016

    Author Tags

    1. $$L_p$$Lp metric
    2. $$k$$k nearest neighbors
    3. Computational geometry
    4. Line segments
    5. Order-k Voronoi diagram
    6. Planar straight line graph
    7. Voronoi diagram

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Unbounded Regions of High-Order Voronoi Diagrams of Lines and Line Segments in Higher DimensionsDiscrete & Computational Geometry10.1007/s00454-023-00492-272:3(1304-1332)Online publication date: 1-Oct-2024
    • (2022)Measuring fault tolerance in IoT mesh networks using Voronoi diagramJournal of Network and Computer Applications10.1016/j.jnca.2021.103297199:COnline publication date: 1-Mar-2022
    • (2021)Enumerating Maximal Shared Risk Link Groups of Circular Disk Failures Hitting k NodesIEEE/ACM Transactions on Networking10.1109/TNET.2021.307010029:4(1648-1661)Online publication date: 21-Apr-2021
    • (2021)Convex-Straight-Skeleton Voronoi Diagrams for Segments and Convex PolygonsAlgorithmica10.1007/s00453-021-00824-983:7(2245-2272)Online publication date: 1-Jul-2021
    • (2019)An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi DiagramsAlgorithmica10.1007/s00453-018-00536-781:6(2317-2345)Online publication date: 1-Jun-2019
    • (2019)Path-Finding with a Full-Vectorized GPU Implementation of Evolutionary Algorithms in an Online Crowd Model Simulation FrameworkComputational Science – ICCS 201910.1007/978-3-030-22750-0_17(223-236)Online publication date: 12-Jun-2019
    • (2019)On Selecting Leaves with Disjoint Neighborhoods in Embedded TreesAlgorithms and Discrete Applied Mathematics10.1007/978-3-030-11509-8_16(189-200)Online publication date: 14-Feb-2019
    • (2018)Computing Convex-Straight-Skeleton Voronoi Diagrams for Segments and Convex PolygonsComputing and Combinatorics10.1007/978-3-319-94776-1_12(130-142)Online publication date: 2-Jul-2018
    • (2016)A randomized divide and conquer algorithm for higher-order abstract Voronoi diagramsComputational Geometry: Theory and Applications10.1016/j.comgeo.2016.08.00459:C(26-38)Online publication date: 1-Dec-2016

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media