[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/648261.753227guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The Truth about Corel - Evaluation in Image Retrieval

Published: 18 July 2002 Publication History

Abstract

To demonstrate the performance of content-based image retrieval systems (CBIRSs), there is not yet any standard data set that is widely used. The only dataset used by a large number of research groups are the Corel Photo CDs. There are more than 800 of those CDs, each containing 100 pictures roughly similar in theme. Unfortunately, basically every evaluation is done on a different subset of the image sets thus making comparison impossible.In this article, we compare different ways of evaluating the performance using a subset of the Corel images with the same CBIRSan d the same set of evaluation measures. The aim is to show how easy it is to get differing results, even when using the same image collection, the same CBIRS and the same performance measures. This pinpoints the fact that we need a standard database of images with a query set and corresponding relevance judgments (RJs) to really compare systems.The techniques used in this article to "enhance" the apparent performance of a CBIRSa re commonly used, sometimes described, sometimes not. They all have a justification and seem to change the performance of a CBIRS but they do actually not. With a larger subset of images it is of course much easier to generate even bigger differences in performance. The goal of this article is not to be a guide of how to make the "apparent" performance of systems look good, but rather to make readers aware of CBIRS evaluations and the importance of standardized image databases, queries and RJ.

References

[1]
Proceedings of the ACM Multimedia Workshop on Multimedia Information Retrieval (ACM MIR 2001) , Ottawa, Canada, October 2001. The Association for Computing Machinery.
[2]
C. Carson, S. Belongie, H. Greenspan, and J. Malik. Color- and texture-based segmentation using em and its application to image querying and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2002 (to appear).
[3]
K. Chakrabarti, K. Porkaew, and S. Mehrotra. Efficient query refinement in multimedia databases. In Proceedings of the 16th International Conference on Data Engineering (ICDE2000) , San Diego, CA, USA, March 1-3 2000. IEEE Computer Society.
[4]
C. W. Cleverdon, L. Mills, and M. Keen. Factors determining the performance of indexing systems. Technical report, ASLIB Cranfield Research Project, Cranfield, 1966.
[5]
L. Duan, W. Gao, and J. Ma. A rich get richer strategy for content-based image retrieval. In R. Laurini, editor, Fourth International Conference On Visual Information Systems (VISUAL'2000) , number 1929 in Lecture Notes in Computer Science, pages 290-299, Lyon, France, November 2000. Springer-Verlag.
[6]
K.-S. Goh, E. Chang, and K.-T. Cheng. Support vector machine pairwise classifiers with error reduction for image classification. In ACMMIR2001, pages 32-37.
[7]
D. Harman. Overview of the first Text REtrieval Conference (TREC-1). In Proceedings of the first Text REtrieval Conference (TREC-1) , pages 1-20, Washington DC, USA, 1992.
[8]
D. P. Huijsmans and N. Sebe. Extended performance graphs for cluster retrieval. In Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'2001) , pages 26-31, Kauai, Hawaii, USA, December 9-14 2001. IEEE Computer Society.
[9]
IEEE. Proceedings of the second International Conference on Multimedia and Exposition (ICME'2001) , Tokyo, Japan, August 2001. IEEE.
[10]
F. Jing, B. Zhang, F. Lin, W.-Y. Ma, and H.-J. Zhang. A novel region-based image retrieval method using relevance feedback. In ACMMIR2001, pages 28-31.
[11]
C. Jörgensen and P. Jörgensen. Testing a vocabulary for image indexing and ground truthing. In G. Beretta and R. Schettini, editors, Internet Imaging III , volume 4672 of SPIE Proceedings , pages 207-215, San Jose, California, USA, January 21-22 2002. (SPIE Photonics West Conference).
[12]
C. S. Lee, W.-Y. Ma, and H. Zhang. Information embedding based on user's relevance feedback in image retrieval. In S. Panchanathan, S.-F. Chang, and C.-C. J. Kuo, editors, Multimedia Storage and Archiving Systems IV (VV02) , volume 3846 of SPIE Proceedings , pages 294-304, Boston, Massachusetts, USA, September 20-22 1999. (SPIE Symposium on Voice, Video and Data Communications).
[13]
M. Li, Z. Chen, L. Wenyin, and H.-J. Zhang. A statistical correlation model for image retrieval. In ACMMIR2001, pages 42-45.
[14]
W. Y. Ma, Y. Deng, and B. S. Manjunath. Tools for texture- and color-based search of images. In B. E. Rogowitz and T. N. Pappas, editors, Human Vision and Electronic Imaging II , volume 3016 of SPIE Proceedings , pages 496-507, San Jose, CA, February 1997.
[15]
H. Müller, W. Müller, S. Marchand-Maillet, D. M. Squire, and T. Pun. Automated benchmarking in content-based image retrieval. In ICME'2001, pages 321-324.
[16]
H. Müller, W. Müller, D. M. Squire, S. Marchand-Maillet, and T. Pun. Performance evaluation in content-based image retrieval: Overview and proposals. Pattern Recognition Letters , 22(5):593-601, April 2001.
[17]
H. Müller, W. Müller, D. M. Squire, Z. Pe¿enovi¿, S. Marchand-Maillet, and T. Pun. An open framework for distributed multimedia retrieval. In Recherche d'Informations Assistée par Ordinateur (RIAO'2000) Computer-Assisted Information Retrieval , volume 1, pages 701-712., Paris, France, apr 12-14 2000.
[18]
M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra, and T. S. Huang. Supporting ranked boolean similarity queries in MARS. IEEE Transactions on Knowledge and Data Engineering , 10(6):905-925, December 1998.
[19]
F. Qian, M. Li, W.-Y. Ma, F. Ling, and B. Zhang. Alternating features spaces in relevance feedback. In ACMMIR2001, pages 14-17.
[20]
G. Salton. The SMART Retrieval System, Experiments in Automatic Document Processing . Prentice Hall, Englewood Cliffs, New Jersey, USA, 1971.
[21]
J. R. Smith and S.-F. Chang. VisualSEEk: a fully automated content-based image query system. In The Fourth ACM International Multimedia Conference and Exhibition , Boston, MA, USA, November 1996.
[22]
K. Sparck Jones and C. van Rijsbergen. Report on the need for and provision of an ideal information retrieval test collection. British Library Research and Development Report 5266, Computer Laboratory, University of Cambridge, 1975.
[23]
D. M. Squire, W. Müller, H. Müller, and J. Raki. Content-based query of image databases, inspirations from text retrieval: inverted files, frequency-based weights and relevance feedback. In The 11th Scandinavian Conference on Image Analysis (SCIA'99) , pages 143-149, Kangerlussuaq, Greenland, June 7-11 1999.
[24]
D. M. Squire and T. Pun. A comparison of human and machine assessments of image similarity for the organization of image databases. In M. Frydrych, J. Parkkinen, and A. Visa, editors, The 10th Scandinavian Conference on Image Analysis (SCIA'97) , pages 51-58, Lappeenranta, Finland, June 1997. Pattern Recognition Society of Finland.
[25]
N. Vasconcelos and A. Lippman. Learning over multiple temporal scales in image databases. In D. Vernon, editor, 6th European Conference on Computer Vision (ECCV2000) , number 1842 in Lecture Notes in Computer Science, pages 33-47, Dublin, Ireland, June 26-30 2000. Springer-Verlag.
[26]
N. Vasconcelos and A. Lippman. A propabilistic architecture for content-based image retrieval. In Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'2000) , pages 216-221, Hilton Head Island, South Carolina, USA, June 13-15 2000. IEEE Computer Society.
[27]
J. Z. Wand, J. Li, and G. Wiederhold. SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence , 23 No 9:1-17, 2001.
[28]
L. Zhu, C. Tang, A. Rao, and A. Zhang. Using thesaurus to model keyblock-based image retrieval. In ICME'2001, pages 237-240.

Cited By

View all
  1. The Truth about Corel - Evaluation in Image Retrieval

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    CIVR '02: Proceedings of the International Conference on Image and Video Retrieval
    July 2002
    386 pages
    ISBN:3540438998

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 18 July 2002

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2016)On interactive learning-to-rank for IRNeurocomputing10.1016/j.neucom.2016.03.084208:C(3-24)Online publication date: 5-Oct-2016
    • (2015)Improving Performance of Image Retrieval Based on Fuzzy Colour Histograms by Using Hybrid Colour Model and Genetic AlgorithmComputer Graphics Forum10.1111/cgf.1260934:8(77-87)Online publication date: 1-Dec-2015
    • (2014)Hybrid color model for image retrieval based on fuzzy histogramsProceedings of the 30th Spring Conference on Computer Graphics10.1145/2643188.2643198(63-69)Online publication date: 28-May-2014
    • (2014)Discovering Features Contexts from Images Using Random IndexingProceedings of the 16th International Workshop on Combinatorial Image Analysis - Volume 846610.1007/978-3-319-07148-0_13(134-145)Online publication date: 28-May-2014
    • (2014)User Intentions in Digital Photo ProductionProceedings of the 20th Anniversary International Conference on MultiMedia Modeling - Volume 832510.1007/978-3-319-04114-8_15(172-182)Online publication date: 6-Jan-2014
    • (2014)Collections for Automatic Image Annotation and Photo Tag RecommendationProceedings of the 20th Anniversary International Conference on MultiMedia Modeling - Volume 832510.1007/978-3-319-04114-8_12(133-145)Online publication date: 6-Jan-2014
    • (2012)Apples to orangesProceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies10.5555/2382029.2382053(172-181)Online publication date: 3-Jun-2012
    • (2012)On the consistency and features of image similarityProceedings of the 4th Information Interaction in Context Symposium10.1145/2362724.2362754(164-173)Online publication date: 21-Aug-2012
    • (2012)A benchmark for content-based retrieval in bivariate data collectionsProceedings of the Second international conference on Theory and Practice of Digital Libraries10.1007/978-3-642-33290-6_31(286-297)Online publication date: 23-Sep-2012
    • (2010)Semantic approach to image retrieval using statistical models based on a lexical ontologyProceedings of the 14th international conference on Knowledge-based and intelligent information and engineering systems: Part IV10.5555/1893971.1894000(240-250)Online publication date: 8-Sep-2010
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media