[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1893971.1894000guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Semantic approach to image retrieval using statistical models based on a lexical ontology

Published: 08 September 2010 Publication History

Abstract

The increasing amount of digital images available on the Internet has made searching, browsing, and organizing such resources a major challenge. This paper proposes a semantic approach to text-based image retrieval of manually annotated digital images. The approach uses statistical models based on Semantic DNA (SDNA) extracted from the structure of a lexical ontology called OntoRo. The approach involves three main techniques: (a) SDNA extraction, (b) word sense disambiguation using statistical models based on the extracted SDNA, and (c) applying semantic similarity measures using SDNA. The experiments performed show that the proposed approach retrieves images based on their conceptual meaning rather than the use of specific keywords in their annotations.

References

[1]
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Comput. Surv., 1-60 (2008).
[2]
Fellbaum, C.: WordNet: An Electronic Lexical Database. The MIT Press, Cambridge (1998).
[3]
Tang, Q.: Knowledge Management Using Machine Learning, Natural Language Processing and Ontology. Cardiff University, Cardiff (2006).
[4]
Setchi, R., Tang, Q., Bouchard, C.: Ontology-Based Concept Indexing of Images. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelligent Information and Engineering Systems. LNCS, vol. 5711, pp. 293-300. Springer, Heidelberg (2009).
[5]
Fadzli, S.A., Setchi, R.: Semantic Approach to Text-based Image Retrieval Using a Lexical Ontology. In: Proc. of the Knowledge Engineering and Emotion Research Int. Conf., Paris, France, March 2-4, pp. 866-876 (2010).
[6]
Sigurbjornsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: WWW 2008: Proceeding of the 17th International Conference on World Wide Web, pp. 327-336. ACM Press, New York (2008).
[7]
Garg, N., Weber, I.: Personalized, interactive tag recommendation for flickr. In: RecSys 2008: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 67-74. ACM, New York (2008).
[8]
Takashita, T., Itokawa, T., Kitasuka, T., Aritsugi, M.: Tag Recommendation for Flickr Using Web Browsing Behavior. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 412-421. Springer, Heidelberg (2010).
[9]
Goldstone, R.L., Son, J.: Similarity. In: Holyoak, K., Morrison, R. (eds.) Cambridge Handbook of Thinking and Reasoning, pp. 13-36. Cambridge University Press, Cambridge (2005).
[10]
Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and Application of a Metric on Semantic Nets. IEEE Transactions on Systems, Man and Cybernetics 19(1), 17-30 (1989).
[11]
Leacock, C., Chodorow, M.: Combining Local Context and WordNet Similarity for Word Sense Identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 265-283. The MIT Press, Cambridge (1998).
[12]
Hirst, G., St-Onge, D.: Lexical Chains as Representations of Context for the Detection and Correction of Malapropisms. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 305-332. The MIT Press, Cambridge (1998).
[13]
Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In: 14th Int Joint Conf. on AI, Montreal, Canada, pp. 448-453 (1995).
[14]
Jiang, J.J., Conrath, D.W.: Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. In: 10th International Conference on Research on Computational Linguistics, ACL, Taiwan (1997).
[15]
Lin, D.: An Information Theoretic Definition of Similarity. In: International Conference on Machine Learning, Madison, WI (1998).
[16]
Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with high-level semantics. Pattern Recognition 40(1), 262-282 (2007).
[17]
Mueller, H., Marchand-Maillet, S., Pun, T.: The truth about Corel--evaluation in image retrieval. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 38- 50. Springer, Heidelberg (2002).
[18]
fotoLIBRA, http://www.fotolibra.com

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
KES'10: Proceedings of the 14th international conference on Knowledge-based and intelligent information and engineering systems: Part IV
September 2010
650 pages
ISBN:3642153836
  • Editors:
  • Rossitza Setchi,
  • Ivan Jordanov,
  • Robert J. Howlett,
  • Lakhmi C. Jain

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 08 September 2010

Author Tags

  1. lexical ontology
  2. semantic similarity
  3. word sense disambiguation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media