[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Comparing Three Clustering-based Scheduling Methods for Energy-Aware Rapid Design of MP2SoCs

Published: 01 April 2018 Publication History

Abstract

In recent years, the Electronic Design Automation (EDA) community shifted spotlights from performance to energy efficiency. Consequently, energy consumption becomes a key criterion to take into consideration during Design Space Exploration (DSE). Finding a trade-off between energy consumption and performance early in the design flow in order to satisfy time-to-market is a design challenge of EDA tools. In this paper, we propose the Energy-aWAre Rapid Design of MP2SoC (EWARDS) framework. The EWARDS framework aims at exploring, at design time, the performance and energy capabilities of modern Massively Parallel Multi-Processors System-on-Chip (MP2SoC). The key contribution of the proposed framework is the implementation of an energy-aware scheduling process, named PREESMPE, that combines state-of-the-art power management techniques together with Clustering-based Scheduling. The scheduling process is integrated into a Model-Driven Engineering (MDE)-based DSE approach to optimize both performance and energy efficiency in MP2SoC. Moreover, EWARDS extends the Modeling and Analysis of Real-Time and Embedded systems (MARTE) profile with power aspects of MP2SoC systems providing a high-level design entry. To demonstrate the efficiency of the proposed approach, we conducted experiments using the H.263 codec and the FFT algorithm. The obtained results demonstrate that the energy-aware scheduling process can effectively save energy in MP2SoC systems. They also confirmed that our MDE-based approach accelerates the DSE process while generating energy-efficient design decisions.

References

[1]
(2009). Ieee standard for design and verification of low power integrated circuits. IEEE std 1801-2009 pp 1---218.
[2]
Acceleo (2016). https://eclipse.org/acceleo/.
[3]
Ahmad, I., & Kwok, Y.K. (1998). On exploiting task duplication in parallel program scheduling. IEEE Transactions on Parallel and Distributed Systems, 9(9), 872---892.
[4]
Ammar, M., Baklouti, M., Pelcat, M., Desnos, K., & Abid, M. (2014). Marte to ? sdf transformation for data-intensive applications analysis. In 2014 Conference on design and architectures for signal and image processing (DASIP) (pp. 1---8): IEEE.
[5]
Ammar, M., Baklouti, M., Pelcat, M., Desnos, K., & Abid, M. (2016a). Automatic generation of s-lam descriptions from uml/marte for the dse of massively parallel embedded systems. In Software engineering, artificial intelligence, networking and parallel/distributed computing 2015 (pp. 195---211): Springer.
[6]
Ammar, M., Baklouti, M., Pelcat, M., Desnos, K., & Abid, M. (2016b). On exploiting energy-aware scheduling algorithms for mde-based design space exploration of mp2soc. In 24th euromicro international conference on parallel, distributed, and network-based processing (PDP 2016) (pp. 643---650): IEEE.
[7]
Arpinen, T., Salminen, E., Hämäläinen, T.D., & Hännikäinen, M. (2012). Marte profile extension for modeling dynamic power management of embedded systems. Journal of Systems Architecture, 58(5), 209---219.
[8]
Atitallah, R.B., Piel, E., Niar, S., Marquet, P., & Dekeyser, J.L. (2007). Multilevel mpsoc simulation using an mde approach. In 2007 IEEE International, SOC Conference (pp. 197---200): IEEE.
[9]
Baklouti, M., Marquet, P., Dekeyser, J.L., & Abid, M. (2015). Fpga-based many-core system-on-chip design. Microprocessors and Microsystems, 39(4), 302---312.
[10]
Bansal, S., Kumar, P., & Singh, K. (2003). An improved duplication strategy for scheduling precedence constrained graphs in multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems, 14(6), 533---544.
[11]
Ben Abdallah, F., Trabelsi, C., Ben Atitallah, R., & Abed, M. (2014). Early power-aware design space exploration for embedded systems: Mpeg-2 case study. In 2014 international symposium on system-on-chip (soc) (pp. 1---8): IEEE.
[12]
Ben Atitallah, R., Senn, E., Chillet, D., Lanoe, M., & Blouin, D. (2013). An efficient framework for power-aware design of heterogeneous mpsoc. IEEE Transactions on Industrial Informatics, 9(1), 487---501.
[13]
Benini, L., Bogliolo, A., & De Micheli, G. (2000). A survey of design techniques for system-level dynamic power management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(3), 299---316.
[14]
Bilal, K., Fayyaz, A., Khan, S.U., & Usman, S. (2015). Power-aware resource allocation in computer clusters using dynamic threshold voltage scaling and dynamic voltage scaling: comparison and analysis. Cluster Computing, 18(2), 865---888.
[15]
Bodin, B., Munier-Kordon, A., & De Dinechin, B.D. (2012). K-periodic schedules for evaluating the maximum throughput of a synchronous dataflow graph (pp. 152---159): IEEE.
[16]
Bonfietti, A., Benini, L., Lombardi, M., & Milano, M. (2010). An efficient and complete approach for throughput-maximal sdf allocation and scheduling on multi-core platforms. In Proceedings of the conference on design, automation and test in Europe, European design and automation association (pp. 897--- 902).
[17]
Brooks, D., Tiwari, V., & Martonosi, M. (2000). Wattch: a framework for architectural-level power analysis and optimizations, vol 28. ACM.
[18]
Buck, J.T., Ha, S., Lee, E.A., & Messerschmitt, D.G. (1994). Ptolemy: a framework for simulating and prototyping heterogeneous systems.
[19]
Callou, GRdA, Maciel, P.R.M., de Andrade, E.C., Tavares, E.A.G., & et al. (2008). A coloured petri net based approach for estimating execution time and energy consumption in embedded systems. In Proceedings of the 21st annual symposium on integrated circuits and system design (pp. 134---139): ACM.
[20]
Chen, H., Shirazi, B., & Marquis, J. (1993). Performance evaluation of a novel scheduling method: Linear clustering with task duplication. In Proceedings of the 2nd international conference on parallel and distributed systems (pp. 270---275).
[21]
Chung, Y.C., & Ranka, S. (1992). Applications and performance analysis of a compile-time optimization approach for list scheduling algorithms on distributed memory multiprocessors. In Proceedings of supercomputing'92 (pp. 512---521): IEEE.
[22]
Colin, J.Y., & Chrétienne, P. (1991). Cpm scheduling with small communication delays and task duplication. Operations Research, 39(4), 680---684.
[23]
Cong, J., Fang, Z., Gill, M., & Reinman, G. (2015). Parade: A cycle-accurate full-system simulation platform for accelerator-rich architectural design and exploration. In Proceedings of the IEEE/ACM international conference on computer-aided design (pp. 380---387): IEEE press.
[24]
Consortium, S., & et al. (2011). Scilab: The free software for numerical computation, Paris, Scilab Consortium.
[25]
Corporation, T. (2011). Tile processor user architecture manual. release 2.4 edn.
[26]
Darbha, S., & Agrawal, D.P. (1998). Optimal scheduling algorithm for distributed-memory machines. IEEE Transactions on Parallel and Distributed Systems, 9(1), 87---95.
[27]
DeAntoni, J., & Mallet, F. (2012). Timesquare: Treat your models with logical time. In Objects, models, components, patterns (pp. 34---41): Springer.
[28]
Dennard, R.H., Rideout, V., Bassous, E., & LeBlanc, A. (1974). Design of ion-implanted mosfet's with very small physical dimensions. IEEE Journal of Solid-state Circuits, 9(5), 256---268.
[29]
Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., & Aridhi, S. (2013). Pimm: Parameterized and interfaced dataflow meta-model for mpsocs runtime reconfiguration. In 2013 international conference on embedded computer systems: architectures, modeling, and simulation (SAMOS XIII) (pp. 41---48): IEEE.
[30]
Desnos, K., Pelcat, M., Nezan, J.F., & Aridhi, S. (2016). On memory reuse between inputs and outputs of dataflow actors. ACM Transactions on Embedded Computing Systems (TECS), 15(2), 30.
[31]
de Dinechin, B.D., Ayrignac, R., Beaucamps, P.E., Couvert, P., Ganne, B., de Massas, P.G., Jacquet, F., Jones, S., Chaisemartin, N.M., Riss, F., & et al (2013). A clustered manycore processor architecture for embedded and accelerated applications. In HPEC (pp. 1---6).
[32]
Erbas, C. (2007). System-level modelling and design space exploration for multiprocessor embedded system-on-chip architectures, vol 132. Amsterdam university press.
[33]
Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., & Burger, D. (2012). Dark silicon and the end of multicore scaling. IEEE Micro (3):122---134.
[34]
Ghamarian, A.H., Geilen, M., Stuijk, S., Basten, T., Moonen, A., Bekooij, M.J., Theelen, B.D., & Mousavi, M. (2006). Throughput analysis of synchronous data flow graphs. In 2006 sixth international conference on application of concurrency to system design, 2006. ACSD (pp. 25---36): IEEE.
[35]
Gomez C., Deantoni J., & Mallet F. (2012). Multi-view power modeling based on uml, marte and sysml. In 2012 38th EUROMICRO conference on Software engineering and advanced applications (SEAA) (pp. 17---20): IEEE.
[36]
Goossens, S., Akesson, B., Koedam, M., Nejad, A.B., Nelson, A., & Goossens, K. (2013). The compsoc design flow for virtual execution platforms. In Proceedings of the 10th FPGAworld conference (p. 7): ACM.
[37]
Graf, S., & Hooman, J. (2004). Correct development of embedded systems. In Software architecture (pp. 241---249). springer.
[38]
Graf, S., Ober, I., & Ober, I. (2006). A real-time profile for uml. International Journal on Software Tools for Technology Transfer, 8(2), 113---127.
[39]
Gray, I., & Audsley, N.C. (2012). Challenges in software development for multicore system-on-chip development. In 2012 23rd IEEE international symposium on Rapid system prototyping (RSP) (pp. 115---121): IEEE.
[40]
Group, O.M. (2005). Uml profile, for schedulability, performance, and time. OMG document, http://www.omgorg/spec/SPTP/11.
[41]
Group, O.M. (2006). Uml profile for system on a chip. OMG document, http://www.omgorg/spec/SoCP/10.
[42]
Group, O.M. (2011a). Uml profile for marte: Modeling and analysis of real-time embedded systems. http://www.omg.org/spec/MARTE/1.1/PDF/.
[43]
Group, O.M. (2011b). Uml profile for marte: Modeling and analysis of real-time embedded systems. OMG document, http://www.omgorg/spec/MARTE/10/PDF/.
[44]
Group, O.M. (2015). Omg systems modeling language. OMG document, http://www.omgorg/spec/SysML/14/.
[45]
Gruian, F., & Kuchcinski, K. (2001). Lenes: task scheduling for low-energy systems using variable supply voltage processors. In Proceedings of the 2001 Asia and South Pacific design automation conference (pp. 449---455): ACM.
[46]
Grüttner, K., Hartmann, P.A., Hylla, K., Rosinger, S., Nebel, W., Herrera, F., Villar, E., Brandolese, C., Fornaciari, W., Palermo, G., & et al (2013). The complex reference framework for hw/sw co-design and power management supporting platform-based design-space exploration. Microprocessors and Microsystems, 37(8), 966---980.
[47]
Guduric, P., Puder, A., & Todtenhofer, R. (2009). A comparison between relational and operational qvt mappings. In ITNG'09 sixth international conference on information technology: new generations, 2009 (pp. 266---271): IEEE.
[48]
Guzek, M., Pecero, J.E., Dorronsoro, B., & Bouvry, P. (2014). Multi-objective evolutionary algorithms for energy-aware scheduling on distributed computing systems. Applied Soft Computing, 24, 432---446.
[49]
Hagner, M., Aniculaesei, A., & Goltz, U. (2011). Uml-based analysis of power consumption for real-time embedded systems. In 2011 IEEE 10th international conference on Trust, security and privacy in computing and communications (trustcom) (pp. 1196---1201): IEEE.
[50]
Holmbacka, S., Nogues, E., Pelcat, M., Lafond, S., Menard, D., & Lilius, J. (2015). Energy-awareness and performance management with parallel dataflow applications. Journal of Signal Processing Systems :1---16.
[51]
Hwang, J.J., Chow, Y.C., Anger, F.D., & Lee, C.Y. (1989). Scheduling precedence graphs in systems with interprocessor communication times. SIAM Journal on Computing, 18(2), 244---257.
[52]
Initiative, S., & et al (2011). Common power format (cpf) 2.0 specification. silicon integration initiative (si2). Inc,http://www.si2org, 5, 19---68.
[53]
Jeffers, J., & Reinders, J. (2013). Intel Xeon Phi coprocessor high-performance programming. Newnes.
[54]
Jia, Z.J., Bautista, T., Núñez, A., Pimentel, A.D., & Thompson, M. (2013). A system-level infrastructure for multidimensional mp-soc design space co-exploration. ACM Transactions on Embedded Computing Systems (TECS), 13(1s), 27.
[55]
Kangas, T., Kukkala, P., Orsila, H., Salminen, E., Hännikäinen, M., Hämäläinen, T.D., Riihimäki, J., & Kuusilinna, K. (2006). Uml-based multiprocessor soc design framework. ACM Transactions on Embedded Computing Systems (TECS), 5(2), 281---320.
[56]
Kempf, T., Ascheid, G., & Leupers, R. (2011). Multiprocessor Systems on Chip: Design Space Exploration. Springer Science & Business Media.
[57]
Khan, S.U., & Min-Allah, N. (2012). A goal programming based energy efficient resource allocation in data centers. The Journal of Supercomputing, 61(3), 502---519.
[58]
Khecharem, A., Gomez, C., DeAntoni, J., Mallet, F., & De Simone, R. (2014). Execution of heterogeneous models for thermal analysis with a multi-view approach. In 2014 forum on specification and design languages (FDL), (Vol. 978 pp. 1---8): IEEE.
[59]
Kienhuis, B., Deprettere, E., Vissers, K., & van der Wolf, P. (1997). An approach for quantitative analysis of application-specific dataflow architectures. In 1997 Proceedings., IEEE international conference on application-specific systems, architectures and processors (pp. 338---349): IEEE.
[60]
Kim, N.S., Austin, T., Baauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J., Kandemir, M., & Narayanan, V. (2003). Leakage current: Moore's law meets static power. computer, 36(12), 68---75.
[61]
Koomey, J.G., Berard, S., Sanchez, M., & Wong, H. (2011). Implications of historical trends in the electrical efficiency of computing. Annals of the History of Computing. IEEE, 33(3), 46---54.
[62]
Kruatrachue, B., & Lewis, T. (1987). Duplication scheduling heuristics (dsh): A new precedence task scheduler for parallel processor systems Oregon State University, Corvallis, OR.
[63]
Kruijtzer, W., Van der Wolf, P., De Kock, E., Stuyt, J., Ecker, W., Mayer, A., Hustin, S., Amerijckx, C., De Paoli, S., & Vaumorin, E. (2008). Industrial ip integration flows based on ip-xact standards. In Design, automation and test in europe, 2008. DATE'08 (pp. 32---37): IEEE.
[64]
Kukkala, P., Riihimaki, J., Hannikainen, M., Hamalainen, T.D., & Kronlof, K. (2005). Uml 2.0 profile for embedded system design. In Proceedings of the conference on design, automation and test in europe-volume 2, IEEE computer society (pp. 710--- 715).
[65]
Kumar, A., Fernando, S., Ha, Y., Mesman, B., & Corporaal, H. (2008). Multiprocessor systems synthesis for multiple use-cases of multiple applications on fpga. ACM Transactions on Design Automation of Electronic Systems (TODAES), 13(3), 40.
[66]
Kumar Rethinagiri, S., Palomar, O., Cristal, A., Unsal, O., & Swift, M.M. (2014). Dessert: Design space exploration tool based on power and energy at system-level. In 2014 27th IEEE international System-on-chip conference (SOCC) (pp. 48---53): IEEE.
[67]
Künzli, S., Thiele, L., & Zitzler, E. (2005). Modular design space exploration framework for embedded systems. In Computers and digital techniques, IEE proceedings-, IET, (Vol. 152 pp. 183---192).
[68]
Le Tallec, J.F., DeAntoni, J., De Simone, R., Ferrero, B., Mallet, F., & Maillet-contoz, L. (2011). Combining systemc, ip-xact and uml/marte in model-based soc design. In Workshop on model based engineering for embedded systems design (m-BED).
[69]
Lee, E.A., & Messerschmitt, D.G. (1987). Synchronous data flow. Proceedings of the IEEE, 75(9), 1235---1245.
[70]
Liu, W., Duan, Y., & Du, W. (2012). An energy efficient clustering-based scheduling algorithm for parallel tasks on homogeneous dvs-enabled clusters. In 2012 IEEE 16th international conference on Computer supported cooperative work in design (CSCWD) (pp. 575---582): IEEE.
[71]
Liu, W., Du, W., Chen, J., Wang, W., & Zeng, G. (2014). Adaptive energy-efficient scheduling algorithm for parallel tasks on homogeneous clusters. Journal of Network and Computer Applications, 41, 101---113.
[72]
Llopis, R.P., & Goossens, K. (1998). The petrol approach to high-level power estimation. In 1998. Proceedings. 1998 international symposium on low power electronics and design (pp. 130---132): IEEE.
[73]
Lugato, D., Venelle, B., Ober, I., & Bruel, J.M. (2010). Model-Driven Engineering for High-Performance Computing Applications. INTECH Open Access Publisher.
[74]
Manzak, A., & Chakrabarti, C. (2001). Variable voltage task scheduling algorithms for minimizing energy. In International symposium on low power electronics and design, 2001 (pp. 279---282): IEEE.
[75]
Mischkalla, F., & Mueller, W. (2014). Architectural low-power design using transaction-based system modeling and simulation. In 2014 international conference on embedded computer systems: architectures, modeling, and simulation (SAMOS XIV) (pp. 258---265): IEEE.
[76]
Moore, G.E. (2006). Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp. 114 ff. IEEE Solid-State Circuits Newsletter, 3(20), 33---35.
[77]
Mudge, T. (2001). Power: a first-class architectural design constraint. Computer (4):52---58.
[78]
Ochoa-Ruiz, G., Guillet, S., Lamotte, F.D., Rutten, E., Bourennane, E.B., Diguet, J.P., & Gogniat, G. (2015). An mde approach for rapid prototyping and implementation of dynamic reconfigurable systems. ACM Transactions on Design Automation of Electronic Systems (TODAES), 21(1), 8.
[79]
Oliveira, M F d S, De Brisolara, L.B., Carro, L., & Wagner, F.R. (2006). Early embedded software design space exploration using uml-based estimation. In 2006. seventeenth ieee international workshop on rapid system prototyping (pp. 24---32). IEEE.
[80]
Ouni, B., Belleudy, C., & Senn, E. (2012). Accurate energy characterization of os services in embedded systems. EURASIP Journal on Embedded Systems, 2012(1), 1---16.
[81]
Papadimitriou, C.H., & Yannakakis, M. (1990). Towards an architecture-independent analysis of parallel algorithms. SIAM journal on computing, 19(2), 322---328.
[82]
Papyrus (2016). http://www.eclipse.org/papyrus/.
[83]
Pelcat, M., Nezan, J.F., Piat, J., Croizer, J., & Aridhi, S. (2009a). A system-level architecture model for rapid prototyping of heterogeneous multicore embedded systems. In Conference on design and architectures for signal and image processing (DASIP) 2009 (pp. 8---pages).
[84]
Pelcat, M., Piat, J., Wipliez, M., Aridhi, S., & Nezan, J.F. (2009b). An open framework for rapid prototyping of signal processing applications. EURASIP journal on embedded systems, 2009(1), 1---13.
[85]
Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.F., & Aridhi, S. (2014). Preesm: a dataflow-based rapid prototyping framework for simplifying multicore dsp programming. In 2014 6th european embedded design in education and research conference (EDERC) (pp. 36---40): IEEE.
[86]
Posadas, H., Nicolás, A., Peñil, P., Villar, E., Broekaert, F., Bourdelles, M., Cohen, A., Lazarescu, M.T., Lavagno, L., Terechko, A., & et al (2014). Improving the design flow for parallel and heterogeneous architectures running real-time applications: The pharaon fp7 project. Microprocessors and Microsystems, 38(8), 960---975.
[87]
Power, D. (2013). Aceplorer.
[88]
Project, T.S.I. (2016). http://www.spices-itea.org/.
[89]
Ranaweera, S., & Agrawal, D.P. (2000). A task duplication based scheduling algorithm for heterogeneous systems. In 14th international parallel and distributed processing symposium, 2000. IPDPS 2000. Proceedings (pp. 445---450): IEEE.
[90]
Research, P. (2001). Diesel user manual. Philips electronic design and tools group.
[91]
Rethinagiri, S.K., Palomar, O., Unsal, O., Cristal, A., Ben-Atitallah, R., & Niar, S. (2014). Pets: power and energy estimation tool at system-level. In 2014 15th international symposium on Quality electronic design (ISQED) (pp. 535---542): IEEE.
[92]
Reyes, V. (2008). Methods and tools for the design of multimedia mpsoc platforms at system level. Spain: Ph.d thesis, University of Las Palmas de Gran Canaria.
[93]
Reyes, V., Kruijtzer, W., Bautista, T., Alkadi, G., & Núñez, A. (2006). A unified system-level modeling and simulation environment for mpsoc design: Mpeg-4 decoder case study. In Proceedings of the conference on design, automation and test in europe: Proceedings, european design and automation association (pp. 474---479).
[94]
Riccobene, E., Scandurra, P., Rosti, A., & Bocchio, S. (2005). A soc design methodology involving a uml 2.0 profile for systemc. In Design, automation and test in europe, 2005. Proceedings (pp. 704---709): IEEE.
[95]
Sangiovanni-Vincentelli, A., & Martin, G. (2001). Platform-based design and software design methodology for embedded systems. IEEE Design & Test of Computers (6):23---33.
[96]
Schattkowsky, T., & Xie, T. (2008). Uml and ip-xact for integrated sprint ip management. UML-SOC'08.
[97]
Senn, E., Douhib, S., Blouin, D., Laurent, J., Turki, S., & Diguet, J.P. (2009). Power and energy estimations in model-based design. In Languages for embedded systems and their applications (pp. 3---26): springer.
[98]
Sharifi, M., Shahrivari, S., & Salimi, H. (2013). Pasta: a power-aware solution to scheduling of precedence-constrained tasks on heterogeneous computing resources. Computing, 95(1), 67---88.
[99]
Shorin, D., & Zimmermann, A. (2014a). Extending the software tool timenet by power consumption estimation of uml marte models. In 2014 international conference on Simulation and modeling methodologies, technologies and applications (SIMULTECH) (pp. 83---91): IEEE.
[100]
Shorin, D., & Zimmermann, A. (2014b). Formal description of an approach for power consumption estimation of embedded systems. In 2014 24th international workshop on Power and timing modeling, optimization and simulation (PATMOS) (pp. 1---10): IEEE.
[101]
Shorin, D., Zimmermann, A., & Maciel, P. (2012). Transforming uml state machines into stochastic petri nets for energy consumption estimation of embedded systems. In Sustainable internet and ICT for sustainability (sustainIT), 2012 (pp. 1---6): IEEE.
[102]
Singh, A.K., Das, A., & Kumar, A. (2013a). Energy optimization by exploiting execution slacks in streaming applications on multiprocessor systems. In Proceedings of the 50th annual design automation conference (p. 115): ACM.
[103]
Singh, A.K., Kumar, A., & Srikanthan, T. (2013b). Accelerating throughput-aware runtime mapping for heterogeneous mpsocs. ACM Transactions on Design Automation of Electronic Systems (TODAES), 18(1), 9.
[104]
Stuijk, S., Geilen, M., & Basten, T. (2006). Sdf ? 3: Sdf for free. In null (pp. 276---278): IEEE.
[105]
Stuijk, S., Geilen, M., & Basten, T. (2010). A predictable multiprocessor design flow for streaming applications with dynamic behaviour. In 2010 13th euromicro conference on Digital system design: architectures, methods and tools (DSD) (pp. 548---555): IEEE.
[106]
Stulova, A., Leupers, R., & Ascheid, G. (2012). Throughput driven transformations of synchronous data flows for mapping to heterogeneous mpsocs. In 2012 international conference on embedded computer systems (SAMOS) (pp. 144---151): IEEE.
[107]
Taylor, M.B. (2012). Is dark silicon useful?: harnessing the four horsemen of the coming dark silicon apocalypse. In Proceedings of the 49th annual design automation conference (pp. 1131---1136): ACM.
[108]
Theelen, B.D. (2004). Performance modelling for system-level design. Citeseer.
[109]
simulation tool S (2016). http://storm.rts-software.org.
[110]
Trabelsi, C., Atitallah, R.B., Meftali, S., Dekeyser, J.L., & Jemai, A. (2011). A model-driven approach for hybrid power estimation in embedded systems design. EURASIP Journal on Embedded Systems, 2011(1), 1---15.
[111]
Valentini, G.L., Lassonde, W., Khan, S.U., Min-Allah, N., Madani, S.A., Li, J., Zhang, L., Wang, L., Ghani, N., Kolodziej, J., & et al (2013). An overview of energy efficiency techniques in cluster computing systems. Cluster Computing, 16(1), 3---15.
[112]
Wang, L., Khan, S.U., Chen, D., Kołodziej, J., Ranjan, R., Xu, C.Z., & Zomaya, A. (2013). Energy-aware parallel task scheduling in a cluster. Future Generation Computer Systems, 29(7), 1661---1670.
[113]
Wei, G.Y., Kim, J., Liu, D., Sidiropoulos, S., & Horowitz, M.A. (2000). A variable-frequency parallel i/o interface with adaptive power-supply regulation. IEEE Journal of Solid-state Circuits, 35(11), 1600---1610.
[114]
van der Wolf, P., de Kock, E., Henriksson, T., Kruijtzer, W., & Essink, G. (2004). Design and programming of embedded multiprocessors: an interface-centric approach. In Proceedings of the 2nd IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis (pp. 206---217): ACM.
[115]
Wu, F., Wu, Q., & Tan, Y. (2015). Workflow scheduling in cloud: a survey. The Journal of Supercomputing, 71(9), 3373---3418.
[116]
Yang, T., & Gerasoulis, A. (1991). A fast static scheduling algorithm for dags on an unbounded number of processors. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing (pp. 633---642): ACM.
[117]
Yang, T., & Gerasoulis, A. (1994). Dsc: Scheduling parallel tasks on an unbounded number of processors. IEEE Transactions on Parallel and Distributed Systems, 5(9), 951---967.
[118]
Yao, F., Demers, A., & Shenker, S. (1995). A scheduling model for reduced cpu energy. In Proceedings., 36th annual symposium on foundations of computer science, 1995 (pp. 374---382): IEEE.
[119]
Ye, W., Vijaykrishnan, N., Kandemir, M., & Irwin, M.J. (2000). The design and use of simplepower: a cycle-accurate energy estimation tool. In Proceedings of the 37th annual design automation conference (pp. 340---345): ACM.
[120]
Zhu, D., Melhem, R., & Childers, B.R. (2003). Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems. IEEE Transactions on Parallel and Distributed Systems, 14 (7), 686---700.
[121]
Zong, Z., Manzanares, A., Ruan, X., & Qin, X. (2011). Ead and pebd: two energy-aware duplication scheduling algorithms for parallel tasks on homogeneous clusters. IEEE Transactions on Computers, 60(3), 360---374.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Signal Processing Systems
Journal of Signal Processing Systems  Volume 90, Issue 4
April 2018
200 pages
ISSN:1939-8018
EISSN:1939-8115
Issue’s Table of Contents

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 April 2018

Author Tags

  1. EWARDS
  2. Energy-aware design-space exploration
  3. MARTE
  4. MP2SoC
  5. Model-driven engineering
  6. PREESM
  7. Power
  8. Scheduling

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media