[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

An energy preserving formulation for the simulation of multiphase turbulent flows

Published: 15 February 2013 Publication History

Abstract

In this manuscript we propose an energy preserving formulation for the simulation of multiphase flows. The new formulation reduces the numerical diffusion with respect to previous formulations dealing with multiple phases, which makes this method to be especially appealing for turbulent flows. In this work we discuss the accuracy and conservation properties of the method in various scenarios with large density and viscosity jumps across the interface including surface tension effects.

References

[1]
D.K. Purnell, M.J. Revell, Energy-bounded flow approximation on a cartesian-product grid over rough terrain, Journal of Computational Physics, 107 (1993) 51-65.
[2]
A. Bagué, D. Fuster, S. Popinet, R. Scardovelli, S. Zaleski, Instability growth rate of two-phase mixing layers from a linear eigenvalue problem and an initial value problem, Physics of Fluids, 22 (2010).
[3]
J.B. Bell, P. Colella, H.M. Glaz, A second-order projection method for the incompressible navier-stokes equations, Journal of Computational Physics, 85 (1989) 257-283.
[4]
A.J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of Computation, 23 (1969) 341-353.
[5]
S.G. Chumakov. Available from: <http://code.google.com/p/hit3d/>.
[6]
S.G. Chumakov, Gravitational effects in reactive flows: from physics to large eddy simulation modeling, ADTSC Nuclear Weapons Program Highlights Los Alamos National Laboratory (unclassified), 2007.
[7]
S.G. Chumakov, A priori study of subgrid-scale flux of a passive scalar in turbulence, Physical Review E, 78 (2008) 15563.
[8]
O. Desjardins, V. Moureau, Methods for multiphase flows with high density ratio, in: Proceedings of the Summer, Program 2010, Center for Turbulence Research, 2010.
[9]
O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, Journal of Computational Physics, 227 (2008) 8395-8416.
[10]
F. Ducros, F. Laporte, T. Souleres, V. Guinot, P. Moinat, B. Caruelle, High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows, Journal of Computational Physics, 161 (2000) 114-139.
[11]
S. Elgobashi, An updated classification map of particle-laden turbulent flows, in: IUTAM Symposium on Computational Approaches to Multiphase Flow, Springer, 2006, pp. 3-10.
[12]
M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian, M.W. Williams, A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, Journal of Computational Physics, 213 (2006) 141-173.
[13]
D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, S. Zaleski, Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dynamics Research, 41 (2009) 065001.
[14]
D. Fuster, A. Bagué, T. Boeck, L. Le Moyne, A. Leboissetier, S. Popinet, P. Ray, R. Scardovelli, S. Zaleski, Simulation of primary atomization with an octree adaptive mesh refinement and VOF method, International Journal of Multiphase Flow, 35 (2009) 550-565.
[15]
A.E. Honein, P. Moin, Higher entropy conservation and numerical stability of compressible turbulence simulations, Journal of Computational Physics, 201 (2004) 531-545.
[16]
J.C. Kok, A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids, Journal of Computational Physics, 228 (2009) 6811-6832.
[17]
R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
[18]
T. Manteuffel, A.B. White, The numerical solution of second-order boundary value problems on nonuniform meshes, Mathematics of Computation, 47 (1986) 511-535.
[19]
J. Meyers, B.J. Geurts, M. Baelmans, Database analysis of errors in large-eddy simulation, Physics of Fluids, 15 (2003) 2740.
[20]
S.B. Pope, Turbulent Flows, Cambridge University Press, 2000.
[21]
S. Popinet. Available from: <http://gfs.sourceforge.net/wiki/index.php>.
[22]
S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, Journal of Computational Physics, 190 (2003) 572-600.
[23]
S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, Journal of Computational Physics, 288 (2009) 5838-5866.
[24]
M. Raessi, H. Pitsch, Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method, Computers and Fluids, 63 (2012) 70-81.
[25]
Y. Renardy, M. Renardy, Prost: a parabolic reconstruction of surface tension for the volume-of-fluid method, Journal of Computational Physics, 183 (2002) 400-421.
[26]
W.J. Rider, Approximate projection methods for incompressible flows: implementation, variants and robustness, Technical report, Los Alamos National Laboratory (LA-UR-2000), 1995.
[27]
O. Simonin, Continuum modelling of dispersed two-phase flows, Lecture Series-van Kareman Institute for Fluid Dynamics, vol. 2, 1996, pp. K1-K47.
[28]
M. Sussman, M. Ohta, Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method, Fluid Dynamics &amp; Materials Processing, 3 (2007) 21-36.
[29]
G. Tomar, D. Fuster, S. Zaleski, S. Popinet, Multiscale simulations of primary atomization using gerris, Computers and Fluids, 39 (2010) 1864-1874.
[30]
E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics - A Practical Introduction, Springer-Verlag, Berlin, 1997.
[31]
D.J. Torres, J.U. Brackbill, The point-set method: front-tracking without connectivity, Journal of Computational Physics, 165 (2000) 620-644.
[32]
G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows, Cambridge University Press, 2011.
[33]
R. Verstappen, A.E.P. Veldman, Symmetry-preserving discretization of turbulent flow, Journal of Computational Physics, 187 (2003) 343-368.
[34]
R. Verstappen, AEP Veldman, Preserving symmetry in convection-diffusion schemes, Turbulent Flow Computation, 2004, pp. 75-100.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 235, Issue C
February 2013
972 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 15 February 2013

Author Tags

  1. Advection scheme
  2. Multiphase flows
  3. Turbulence

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media