[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A seven-equation diffused interface method for resolved multiphase flows

Published: 15 February 2023 Publication History

Abstract

The seven-equation model is a compressible multiphase formulation that allows for phasic velocity and pressure disequilibrium. These equations are solved using a diffused interface method that models resolved multiphase flows. Novel extensions are proposed for including the effects of surface tension, viscosity, multi-species, and reactions. The allowed non-equilibrium of pressure in the seven-equation model provides numerical stability in strong shocks and allows for arbitrary and independent equations of states. Whereas, the allowed non-equilibrium of velocity allows the method to be useful even for unresolved particles where a finite-rate velocity relaxation is observed. A discrete equations method (DEM) models the fluxes. We show that even though stiff pressure- and velocity-relaxation solvers have been used, they are not necessarily needed for all the tests with DEM because the non-conservative fluxes are accurately modeled. An interface compression scheme controls the numerical diffusion of the interface, and its effects on the solution are discussed. Test cases are used to validate the computational method and demonstrate its applicability. They include multiphase shock tubes, shock propagation through a material interface and a dispersed particle curtain, a surface-tension-driven oscillating droplet, an accelerating droplet in a viscous medium, and shock–detonation interacting with a deforming droplet. Simulation results are compared against exact solutions and experiments when possible.

Highlights

The seven-equation model allows for pressure and velocity non-equilibrium.
Novel extensions for surface tension, viscous effects, multi-species, reactions.
Effect of using pressure/velocity stiff relaxation solvers evaluated.
Various tests include shocks, droplet deformation, drag, bubble collapse, etc.

References

[1]
A.H. Lefebvre, Gas Turbine Combustion, CRC Press, 1998.
[2]
G.P. Sutton, History of Liquid Propellant Rocket Engines, AIAA, 2006.
[3]
C.M. Tarver, S.K. Chidester, A.L. Nichols, Critical conditions for impact-and shock-induced hot spots in solid explosives, J. Phys. Chem. 100 (1996) 5794–5799.
[4]
R. Vehring, Pharmaceutical particle engineering via spray drying, Pharm. Res. 25 (2008) 999–1022.
[5]
M. Gorokhovski, M. Herrmann, Modeling primary atomization, Annu. Rev. Fluid Mech. 40 (2008) 343–366.
[6]
R. Saurel, C. Pantano, Diffuse-interface capturing methods for compressible two-phase flows, Annu. Rev. Fluid Mech. 50 (2018) 105–130.
[7]
S. Balachandar, J.K. Eaton, Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech. 42 (2010) 111–133.
[8]
A. Panchal, S. Menon, A hybrid Eulerian-Eulerian/Eulerian-Lagrangian method for dense-to-dilute dispersed phase flows, J. Comput. Phys. 439 (2021).
[9]
S.H. Bryngelson, K. Schmidmayer, T. Colonius, A quantitative comparison of phase-averaged models for bubbly, cavitating flows, Int. J. Multiph. Flow 115 (2019) 137–143.
[10]
Bryngelson, S.H.; Fox, R.O.; Colonius, T. (2021): Conditional moment methods for polydisperse cavitating flows. arXiv preprint arXiv:2112.14172.
[11]
J.A. Sethian, P. Smereka, Level set methods for fluid interfaces, Annu. Rev. Fluid Mech. 35 (2003) 341–372.
[12]
M. Sussman, K.M. Smith, M.Y. Hussaini, M. Ohta, R. Zhi-Wei, A sharp interface method for incompressible two-phase flows, J. Comput. Phys. 221 (2007) 469–505.
[13]
C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201–225.
[14]
M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows, J. Comput. Phys. 162 (2000) 301–337.
[15]
J. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335–354.
[16]
R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys. 152 (1999) 457–492.
[17]
S. Elghobashi, Direct numerical simulation of turbulent flows laden with droplets or bubbles, Annu. Rev. Fluid Mech. 51 (2019) 217–244.
[18]
P. Das, H. Udaykumar, A sharp-interface method for the simulation of shock-induced vaporization of droplets, J. Comput. Phys. 405 (2020).
[19]
H. Terashima, G. Tryggvason, A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys. 228 (2009) 4012–4037.
[20]
P.T. Barton, B. Obadia, D. Drikakis, A conservative level-set based method for compressible solid/fluid problems on fixed grids, J. Comput. Phys. 230 (2011) 7867–7890.
[21]
M. Baer, J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow 12 (1986) 861–889.
[22]
X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1994) 200–212.
[23]
B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys. 32 (1979) 101–136.
[24]
F. Petitpas, J. Massoni, R. Saurel, E. Lapebie, L. Munier, Diffuse interface model for high speed cavitating underwater systems, Int. J. Multiph. Flow 35 (2009) 747–759.
[25]
K. Schmidmayer, F. Petitpas, S. Le Martelot, E. Daniel, ECOGEN: an open-source tool for multiphase, compressible, multiphysics flows, Comput. Phys. Commun. 251 (2020).
[26]
R. Saurel, P. Boivin, O. Le Métayer, A general formulation for cavitating, boiling and evaporating flows, Comput. Fluids 128 (2016) 53–64.
[27]
M.G. Rodio, R. Abgrall, An innovative phase transition modeling for reproducing cavitation through a five-equation model and theoretical generalization to six and seven-equation models, Int. J. Heat Mass Transf. 89 (2015) 1386–1401.
[28]
R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150 (1999) 425–467.
[29]
N. Andrianov, G. Warnecke, The Riemann problem for the Baer–Nunziato two-phase flow model, J. Comput. Phys. 195 (2004) 434–464.
[30]
D.W. Schwendeman, C.W. Wahle, A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys. 212 (2006) 490–526.
[31]
H. Lochon, F. Daude, P. Galon, J.-M. Hérard, HLLC-type Riemann solver with approximated two-phase contact for the computation of the Baer–Nunziato two-fluid model, J. Comput. Phys. 326 (2016) 733–762.
[32]
R. Abgrall, R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures, J. Comput. Phys. 186 (2003) 361–396.
[33]
A. Kapila, R. Menikoff, J. Bdzil, S. Son, D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids 13 (2001) 3002–3024.
[34]
G. Allaire, S. Clerc, S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys. 181 (2002) 577–616.
[35]
J. Meng, T. Colonius, Numerical simulations of the early stages of high-speed droplet breakup, Shock Waves 25 (2015) 399–414.
[36]
N. Liu, Z. Wang, M. Sun, R. Deiterding, H. Wang, Simulation of liquid jet primary breakup in a supersonic crossflow under adaptive mesh refinement framework, Aerosp. Sci. Technol. 91 (2019) 456–473.
[37]
A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, J. Comput. Phys. 202 (2005) 664–698.
[38]
F. Petitpas, E. Franquet, R. Saurel, O. Le Metayer, A relaxation-projection method for compressible flows. Part II: artificial heat exchanges for multiphase shocks, J. Comput. Phys. 225 (2007) 2214–2248.
[39]
A. Tiwari, J.B. Freund, C. Pantano, A diffuse interface model with immiscibility preservation, J. Comput. Phys. 252 (2013) 290–309.
[40]
G. Perigaud, R. Saurel, A compressible flow model with capillary effects, J. Comput. Phys. 209 (2005) 139–178.
[41]
R. Abgrall, M.G. Rodio, Discrete equation method (DEM) for the simulation of viscous, compressible, two-phase flows, Comput. Fluids 91 (2014) 164–181.
[42]
R. Saurel, F. Petipas, R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech. 607 (2008) 313–350.
[43]
S.H. Bryngelson, K. Schmidmayer, V. Coralic, J.C. Meng, K. Maeda, T. Colonius, MFC: an open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver, Comput. Phys. Commun. 266 (2021).
[44]
K. Schmidmayer, S.H. Bryngelson, T. Colonius, An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics, J. Comput. Phys. 402 (2020).
[45]
A.B. Wood, A Textbook of Sound, G. Bell and Sons Ltd., 1930.
[46]
R. Saurel, F. Petitpas, R.A. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys. 228 (2009) 1678–1712.
[47]
A. Zein, M. Hantke, G. Warnecke, Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comput. Phys. 229 (2010) 2964–2998.
[48]
M. Pelanti, K.-M. Shyue, A numerical model for multiphase liquid–vapor–gas flows with interfaces and cavitation, Int. J. Multiph. Flow 113 (2019) 208–230.
[49]
A.D. Demou, N. Scapin, M. Pelanti, L. Brandt, A pressure-based diffuse interface method for low-Mach multiphase flows with mass transfer, J. Comput. Phys. 448 (2022).
[50]
M. Rodriguez, S.H. Bryngelson, S. Cao, T. Colonius, Acoustically-induced bubble growth and phase change dynamics near compliant surfaces, in: 11th International Symposium on Cavitation, 2021.
[51]
B. Dorschner, L. Biasiori-Poulanges, K. Schmidmayer, H. El-Rabii, T. Colonius, On the formation and recurrent shedding of ligaments in droplet aerobreakup, J. Fluid Mech. 904 (2020).
[52]
V. Coralic, T. Colonius, Finite-volume weno scheme for viscous compressible multicomponent flows, J. Comput. Phys. 274 (2014) 95–121.
[53]
H. Guillard, M. Labois, Numerical Modelling of Compressible Two-Phase Flows, 2006.
[54]
P. Gaillard, V. Giovangigli, L. Matuszewski, A diffuse interface lox/hydrogen transcritical flame model, Combust. Theory Model. 20 (2016) 486–520.
[55]
A. Chiapolino, P. Boivin, R. Saurel, A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows, Comput. Fluids 150 (2017) 31–45.
[56]
E. Goncalves, R.F. Patella, Numerical simulation of cavitating flows with homogeneous models, Comput. Fluids 38 (2009) 1682–1696.
[57]
S. Clerc, Numerical simulation of the homogeneous equilibrium model for two-phase flows, J. Comput. Phys. 161 (2000) 354–375.
[58]
S.V. Apte, P. Moin, Spray modeling and predictive simulations in realistic gas-turbine engines, in: Handbook of Atomization and Sprays, Springer, 2011, pp. 811–835.
[59]
F. Zhang, D. Frost, P. Thibault, S. Murray, Explosive dispersal of solid particles, Shock Waves 10 (2001) 431–443.
[60]
M. Herrmann, A dual-scale LES subgrid model for turbulent liquid/gas phase interface dynamics, in: ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, American Society of Mechanical Engineers, 2015.
[61]
L. Han, X. Hu, N.A. Adams, Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method, J. Comput. Phys. 280 (2015) 387–403.
[62]
G. Tomar, D. Fuster, S. Zaleski, S. Popinet, Multiscale simulations of primary atomization, Comput. Fluids 39 (2010) 1864–1874.
[63]
C.-H. Chang, M.-S. Liou, A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+-up scheme, J. Comput. Phys. 225 (2007) 840–873.
[64]
S. Tokareva, E.F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys. 229 (2010) 3573–3604.
[65]
N.T. Nguyen, M. Dumbser, A path-conservative finite volume scheme for compressible multi-phase flows with surface tension, Appl. Math. Comput. 271 (2015) 959–978.
[66]
R. Saurel, A. Chinnayya, Q. Carmouze, Modelling compressible dense and dilute two-phase flows, Phys. Fluids 29 (2017).
[67]
K. Schmidmayer, J. Caze, F. Petitpas, E. Daniel, N. Favrie, Modelling interactions between waves and diffused interfaces, Int. J. Numer. Methods Fluids (2021) 1–27.
[68]
D. Furfaro, R. Saurel, L. David, F. Beauchamp, Towards sodium combustion modeling with liquid water, J. Comput. Phys. 403 (2020).
[69]
D. Dyson, S. Vasu, A. Arakelyan, N. Berube, S. Briggs, J. Ramirez, E.M. Ninnemann, K. Thurmond, G. Kim, W.H. Green, et al., Detonation wave-induced breakup and combustion of RP-2 fuel droplets, in: AIAA SciTech 2022 Forum, 2022, AIAA–2022–1453.
[70]
R.K. Shukla, C. Pantano, J.B. Freund, An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys. 229 (2010) 7411–7439.
[71]
S.S. Jain, A. Mani, P. Moin, A conservative diffuse-interface method for compressible two-phase flows, J. Comput. Phys. 418 (2020).
[72]
M.S. Dodd, A. Ferrante, On the interaction of Taylor length scale size droplets and isotropic turbulence, J. Fluid Mech. 806 (2016) 356–412.
[73]
S. Fechter, C.-D. Munz, C. Rohde, C. Zeiler, A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension, J. Comput. Phys. 336 (2017) 347–374.
[74]
K. Schmidmayer, F. Petitpas, E. Daniel, N. Favrie, S. Gavrilyuk, A model and numerical method for compressible flows with capillary effects, J. Comput. Phys. 334 (2017) 468–496.
[75]
M. Pelanti, K.-M. Shyue, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves, J. Comput. Phys. 259 (2014) 331–357.
[76]
S. Tanguy, T. Ménard, A. Berlemont, A level set method for vaporizing two-phase flows, J. Comput. Phys. 221 (2007) 837–853.
[77]
A. Chiapolino, R. Saurel, B. Nkonga, Sharpening diffuse interfaces with compressible fluids on unstructured meshes, J. Comput. Phys. 340 (2017) 389–417.
[78]
M. Akiki, T.P. Gallagher, S. Menon, Mechanistic approach for simulating hot-spot formations and detonation in polymer-bonded explosives, AIAA J. 55 (2017) 585–598.
[79]
M. Salvadori, P. Tudisco, D. Ranjan, S. Menon, Numerical investigation of mass flow rate effects on multiplicity of detonation waves within a H2/Air rotating detonation combustor, Int. J. Hydrog. Energy 47 (2022) 4155–4170.
[80]
R. Baurle, G. Alexopoulos, H. Hassan, Assumed joint probability density function approach for supersonic turbulent combustion, J. Propuls. Power 10 (1994) 473–484.
[81]
N. Patel, S. Menon, Simulation of spray–turbulence–flame interactions in a lean direct injection combustor, Combust. Flame 153 (2008) 228–257.
[82]
K. Balakrishnan, D. Nance, S. Menon, Simulation of impulse effects from explosive charges containing metal particles, Shock Waves 20 (2010) 217–239.
[83]
E.F. Toro, The hll and hllc Riemann solvers, in: Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, 2009, pp. 315–344.
[84]
K.-M. Shyue, F. Xiao, An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach, J. Comput. Phys. 268 (2014) 326–354.
[85]
L.D. Gryngarten, S. Menon, A generalized approach for sub-and super-critical flows using the local discontinuous Galerkin method, Comput. Methods Appl. Mech. Eng. 253 (2013) 169–185.
[86]
Jain, S.S.; Adler, M.C.; West, J.R.; Mani, A.; Moin, P.; Lele, S.K. (2021): Assessment of diffuse-interface methods for compressible multiphase fluid flows and elastic-plastic deformation in solids. arXiv preprint arXiv:2109.09729.
[87]
T.J. Poinsot, S.K. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101 (1992) 104–129.
[88]
P. Sridharan, T.L. Jackson, J. Zhang, S. Balachandar, Shock interaction with one-dimensional array of particles in air, J. Appl. Phys. 117 (2015).
[89]
X. Rogue, G. Rodriguez, J. Haas, R. Saurel, Experimental and numerical investigation of the shock-induced fluidization of a particles bed, Shock Waves 8 (1998) 29–45.
[90]
J.B. Keller, M. Miksis, Bubble oscillations of large amplitude, J. Acoust. Soc. Am. 68 (1980) 628–633.
[91]
U. Ghia, K. Ghia, C. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48 (1982) 387–411.
[92]
F.M. White, I. Corfield, Viscous Fluid Flow, vol. 3, McGraw-Hill, New York, 2006.
[93]
D. Igra, T. Ogawa, K. Takayama, A parametric study of water column deformation resulting from shock wave loading, At. Sprays 12 (2002).
[94]
H. Chen, Two-dimensional simulation of stripping breakup of a water droplet, AIAA J. 46 (2008) 1135–1143.
[95]
C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press, 2011.
[96]
L. Rayleigh, et al., On the capillary phenomena of jets, Proc. R. Soc. Lond. 29 (1879) 71–97.
[97]
T. Gallagher, M. Akiki, S. Menon, V. Sankaran, V. Sankaran, Development of the generalized MacCormack scheme and its extension to low Mach number flows, Int. J. Numer. Methods Fluids 85 (2017) 165–188.
[98]
N.V. Patel, Simulation of hydrodynamic fragmentation from a fundamental and an engineering perspective, Ph.D. thesis Georgia Institute of Technology, 2007.
[99]
U. Fey, M. König, H. Eckelmann, A new Strouhal–Reynolds-number relationship for the circular cylinder in the range 47< re< 2× 10 5, Phys. Fluids 10 (1998) 1547–1549.
[100]
S. Temkin, S.S. Kim, Droplet motion induced by weak shock waves, J. Fluid Mech. 96 (1980) 133–157.
[101]
M. Pilch, C. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, Int. J. Multiph. Flow 13 (1987) 741–757.
[102]
K.W. Thompson, Time dependent boundary conditions for hyperbolic systems, J. Comput. Phys. 68 (1987) 1–24.
[103]
M. Salvadori, A. Panchal, D. Ranjan, S. Menon, Numerical study of detonation propagation in H2-Air with kerosene droplets, in: AIAA SciTech 2022 Forum, 2022, AIAA–2022–0394.
[104]
J. Kindracki, Experimental research on rotating detonation in liquid fuel–gaseous air mixtures, Aerosp. Sci. Technol. 43 (2015) 445–453.
[105]
M. Gogulya, M. Makhov, A.Y. Dolgoborodov, M. Brazhnikov, V. Arkhipov, V. Shchetinin, Mechanical sensitivity and detonation parameters of aluminized explosives, Combust. Explos. Shock Waves 40 (2004) 445–457.
[106]
K. Kailasanath, E. Oran, J. Boris, T. Young, Determination of detonation cell size and the role of transverse waves in two-dimensional detonations, Combust. Flame 61 (1985) 199–209.
[107]
Pelanti, M. (2021): Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass transfer. arXiv preprint arXiv:2108.00556.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 475, Issue C
Feb 2023
985 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 15 February 2023

Author Tags

  1. Multiphase flows
  2. Diffused interface method
  3. Seven-equation model

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media