[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1218112.1218146acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
Article

Gradient-based simulation optimization

Published: 03 December 2006 Publication History

Abstract

We present a review of methods for simulation optimization. In particular, we focus on gradient-based techniques for continuous optimization. We demonstrate the main concepts using as an example the multidimensional newsvendor problem. We also discuss mathematical techniques and results that are useful in verifying and analyzing the simulation optimization procedures.

References

[1]
Andradóttir, S. 1998. A review of simulation optimization techniques. In Proceedings of the 1998 Winter Simulation Conference, ed. D. Medeiros, E. Watson, J. S. Carson, and M. S. Manivannan, 151--158.
[2]
Azadivar, F. 1999. Simulation optimization methodologies. In Proceedings of the 1999 Winter Simulation Conference, ed. P. A. Farrington, H. Black Nembhard, D. T. Sturrock, and G. W. Evans, 93--100.
[3]
Bastin, F., C. Cirillo, and P. L. Toint. 2007. Convergence theory for nonconvex stochastic programming with an application to mixed logit. Mathematical Programming 108:207--234.
[4]
Birge, J. R., and F. Louveaux. 1997. Introduction to stochastic programming. New York: Springer.
[5]
Chen, H., and B. W. Schmeiser. 2001. Stochastic root finding via retrospective approximation. IIE Transactions 33:259--275.
[6]
Fu, M. C. 1990. Convergence of the GI/G/1 queue using infinitesimal perturbation analysis. Journal of Optimization Theory and Applications 65:149--160.
[7]
Fu, M. C. 1994. Optimization via simulation: a review. Annals of Operations Research 53:199--247.
[8]
Fu, M. C. 2002. Optimization for simulation: theory vs. practice. INFORMS Journal on Computing 14:192--215.
[9]
Fu, M. C., F. Glover, and J. April. 2005. Simulation optimization: A review, new developments and applications. In Proceedings of the 2005 Winter Simulation Conference, ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 83--95.
[10]
Fu, M. C., and J.-Q. Hu. 1996. A comparison of perturbation analysis techniques. In Proceedings of the 1996 Winter Simulation Conference, ed. J.M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain, 295--301.
[11]
Fu, M. C., and J.-Q. Hu. 1997. Conditional Monte Carlo: Gradient estimation and optimization applications. Boston: Kluwer.
[12]
Glasserman, P. 1991. Gradient estimation via perturbation analysis. The Netherlands: Kluwer.
[13]
Glynn, P. W. 1989. Optimization of stochastic systems via simulation. In Proceedings of the 1989 Winter Simulation Conference, 90--105.
[14]
Harrison, J. M., and J. A. Van Mieghem. 1999. Multi-resource investment stragies: Operational hedging under demand uncertainty. European Journal of Operational Research 113:17--29.
[15]
Healy, K., and L. W. Schruben. 1991. Retrospective simulation response optimization. In Proceedings of the 1991 Winter Simulation Conference, ed. B. L. Nelson, W. D. Kelton, and G. Clark, 901--907.
[16]
Henderson, S. G., and B. L. Nelson. (Eds.) 2006. Handbook of simulation. Elsevier. Forthcoming.
[17]
Kiefer, J., and J. Wolfowitz. 1952. Stochastic estimation of the maximum of a regression function. Annals of Mathematical Statistics 23:462--466.
[18]
Kushner, H. J., and D. C. Clark. 1978. Stochastic approximation methods for constrained and unconstrained systems. New York: Springer-Verlag.
[19]
Kushner, H. J., and G. G. Yin. 2003. Stochastic approximation and recursive algorithms and applications. 2nd ed. New York: Springer-Verlag.
[20]
L'Ecuyer, P. 1991. A unified view of the IPA, SF and LR gradient estimation techniques. Management Science 36:1364--1383.
[21]
L'Ecuyer, P. 1995. On the interchange of derivative and expectation for likelihood ratio derivative estimators. Management Science 41:738--748.
[22]
L'Ecuyer, P., and P. W. Glynn. 1994. Stochastic optimization by simulation: Convergence proofs for the GI/G/1 queue in steady-state. Management Science 40:1562--1578.
[23]
L'Ecuyer, P., and G. Perron. 1994. On the convergence rates of IPA and FDC derivative estimators. Operations Research 42(4):643--656.
[24]
Plambeck, E. L., B.-R. Fu, S. M. Robinson, and R. Suri. 1996. Sample-path optimization of convex stochastic performance functions. Mathematical Programming 75:137--176.
[25]
Polyak, B., and A. Juditsky. 1992. Acceleration of stochastic approximation by averaging. SIAM Journals on Control and Optimization 30(4):838--855.
[26]
Robbins, H., and S. Monro. 1951. A stochastic approximation method. Annals of Mathematical Statistics 22:400--407.
[27]
Robinson, S. M. 1996. Analysis of sample-path optimization. Mathematics of Operations Research 21:513--528.
[28]
Rubinstein, R. Y., and A. Shapiro. 1993. Discrete event systems: Sensitivity analysis and stochastic optimization by the score function method. Chichester: Wiley.
[29]
Ruppert, D. 1985. A Newton-Raphson version of the multivariate Robbins-Monro procedure. Annals of Statistics 13:236--245.
[30]
Shapiro, A. 1993. Asymptotic behavior of optimal solutions in stochastic programming. Mathematics of Operations Research 18:829--845.
[31]
Shapiro, A. 2003. Monte Carlo sampling methods. In Stochastic Programming, ed. A. Ruszczynski and A. Shapiro, Handbooks in Operations Research and Management Science. Elsevier.
[32]
Van Mieghem, J. A., and N. Rudi. 2002. Newsvendor networks: Inventory management and capacity investment with discretionarty activities. Manufacturing and Service Operations Management 4(4):313--335.
[33]
Zazanis, M. A., and R. Suri. 1993. Convergence rates of finite-difference sensitivity estimates for stochastic systems. Operations Research 41:694--703.

Cited By

View all
  • (2014)Multidimensional stochastic approximationACM Transactions on Modeling and Computer Simulation10.1145/255308524:1(1-28)Online publication date: 1-Jan-2014
  • (2013)Stochastic root finding for optimized certainty equivalentsProceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World10.5555/2675983.2676101(922-932)Online publication date: 8-Dec-2013
  • (2013)Learning logistic demand curves in business-to-business pricingProceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World10.5555/2675983.2675987(29-40)Online publication date: 8-Dec-2013
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '06: Proceedings of the 38th conference on Winter simulation
December 2006
2429 pages
ISBN:1424405017

Sponsors

  • IIE: Institute of Industrial Engineers
  • ASA: American Statistical Association
  • IEICE ESS: Institute of Electronics, Information and Communication Engineers, Engineering Sciences Society
  • IEEE-CS\DATC: The IEEE Computer Society
  • SIGSIM: ACM Special Interest Group on Simulation and Modeling
  • NIST: National Institute of Standards and Technology
  • (SCS): The Society for Modeling and Simulation International
  • INFORMS-CS: Institute for Operations Research and the Management Sciences-College on Simulation

Publisher

Winter Simulation Conference

Publication History

Published: 03 December 2006

Check for updates

Qualifiers

  • Article

Conference

WSC06
Sponsor:
  • IIE
  • ASA
  • IEICE ESS
  • IEEE-CS\DATC
  • SIGSIM
  • NIST
  • (SCS)
  • INFORMS-CS
WSC06: Winter Simulation Conference 2006
December 3 - 6, 2006
California, Monterey

Acceptance Rates

WSC '06 Paper Acceptance Rate 177 of 252 submissions, 70%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2014)Multidimensional stochastic approximationACM Transactions on Modeling and Computer Simulation10.1145/255308524:1(1-28)Online publication date: 1-Jan-2014
  • (2013)Stochastic root finding for optimized certainty equivalentsProceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World10.5555/2675983.2676101(922-932)Online publication date: 8-Dec-2013
  • (2013)Learning logistic demand curves in business-to-business pricingProceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World10.5555/2675983.2675987(29-40)Online publication date: 8-Dec-2013
  • (2010)Convergence properties of direct search methods for stochastic optimizationProceedings of the Winter Simulation Conference10.5555/2433508.2433628(1003-1011)Online publication date: 5-Dec-2010
  • (2009)Sample average approximation approach to multi-location transshipment problem with capacitated productionWinter Simulation Conference10.5555/1995456.1995782(2384-2394)Online publication date: 13-Dec-2009
  • (2009)An adaptive multidimensional version of the Kiefer-Wolfowitz stochastic approximation algorithmWinter Simulation Conference10.5555/1995456.1995549(601-612)Online publication date: 13-Dec-2009
  • (2009)An ordinal optimization theory-based algorithm for a class of simulation optimization problems and applicationExpert Systems with Applications: An International Journal10.5555/1512993.151312536:5(9340-9349)Online publication date: 1-Jul-2009
  • (2008)Simulation-optimization using a reinforcement learning approachProceedings of the 40th Conference on Winter Simulation10.5555/1516744.1516984(1376-1383)Online publication date: 7-Dec-2008
  • (2008)The mathematics of continuous-variable simulation optimizationProceedings of the 40th Conference on Winter Simulation10.5555/1516744.1516774(122-132)Online publication date: 7-Dec-2008
  • (2007)Allocation of simulation runs for simulation optimizationProceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come10.5555/1351542.1351619(363-371)Online publication date: 9-Dec-2007

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media