[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1516744.1516774acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
research-article

The mathematics of continuous-variable simulation optimization

Published: 07 December 2008 Publication History

Abstract

Continuous-variable simulation optimization problems are those optimization problems where the objective function is computed through stochastic simulation and the decision variables are continuous. We discuss verifiable conditions under which the objective function is continuous or differ-entiable, and outline some key properties of two classes of methods for solving such problems, namely sample-average approximation and stochastic approximation.

References

[1]
Andradóttir, S. 1998. Simulation optimization. In Handbook of Simulation: Principles, Methodology, Advances, Applications and Practice, ed. J. Banks, 307--333. New York: Wiley.
[2]
Ankenman, B., B. L. Nelson, and J. Staum. 2008. Stochastic kriging for simulation metamodeling. Northwestern University IEMS Working paper 08--01.
[3]
Asmussen, S., and P. W. Glynn. 2007. Stochastic simulation: Algorithms and analysis, Volume 57 of Stochastic Modeling and Applied Probability. New York: Springer.
[4]
Barton, R. R., and M. Meckesheimer. 2006. Metamodel-based simulation optimization. In Handbook of Simulation, ed. S. G. Henderson and B. L. Nelson, 535--574. Amsterdam: Elsevier.
[5]
Bastin, F., C. Cirillo, and P. L. Toint. 2006. Application of an adaptive Monte-Carlo algorithm to mixed logit estimation. Transportation Research B 40:577--593.
[6]
Bayraksan, G., and D. P. Morton. 2007. Assessing solution quality in stochastic programs. Mathematical Programming Series B 108:495--514.
[7]
Bhatnagar, S. 2005. Adaptive three-timescale stochastic approximation. ACM Transactions on Modeling and Computer Simulation 15 (1): 74--107.
[8]
Calvin, J. M. 2004. Lower bound on complexity of optimization of continuous functions. Journal of Complexity 20 (5): 773--795.
[9]
Chen, H., and B. W. Schmeiser. 2001. Stochastic root finding via retrospective approximation. IIE Transactions 33:259--275.
[10]
Dieudonné, J. A. 1960. Foundations of modern analysis. New York: Academic Press.
[11]
Dippon, J., and J. Renz. 1997. Weighted means in stochastic approximation for minima. SIAM Journal on Control and Optimization 35:1811--1827.
[12]
Fu, M. C. 2002. Optimization for simulation: theory vs. practice. INFORMS Journal on Computing 14:192--215.
[13]
Fu, M. C. 2006. Gradient estimation. In Simulation, ed. S. G. Henderson and B. L. Nelson, Handbooks in Operations Research and Management Science, 575-- 616. Amsterdam: Elsevier.
[14]
Fu, M. C., and J.-Q. Hu. 1997. Conditional Monte Carlo: Gradient estimation and optimization applications. Boston: Kluwer.
[15]
Glasserman, P. 1991. Gradient estimation via perturbation analysis. The Netherlands: Kluwer.
[16]
Glover, F., J. P. Kelly, and M. Laguna. 1996. New advances and applications of combining simulation and optimization. In Proceedings of the 1996 Winter Simulation Conference, 144--152. Washington, DC, USA: IEEE.
[17]
Healy, K., and L. W. Schruben. 1991. Retrospective simulation response optimization. In Proceedings of the 1991 Winter Simulation Conference, ed. B. L. Nelson, W. D. Kelton, and G. Clark, 901--907. Piscataway NJ: IEEE.
[18]
Henderson, S. G., and B. L. Nelson. (Eds.) 2006. Simulation. Handbooks in Operations Research and Management Science. Amsterdam: Elsevier.
[19]
Ho, Y. C., and X. R. Cao. 1991. Perturbation analysis of discrete-event systems. Boston MA: Kluwer Academic.
[20]
Hong, L. J., and B. L. Nelson. 2006. Discrete optimization via simulation using COMPASS. Operations Research 54 (1): 115--129.
[21]
Hsieh, M., and P. W. Glynn. 2002. Confidence regions for stochastic alogorithms. In Proceedings of the 2002 Winter Simulation Conference, ed. E. Yucesan, C. H. Chen, J. L. Snowdon, and J. M. Charnes, 370--376. Piscataway NJ: IEEE.
[22]
Hu, J., M. C. Fu, and S. I. Marcus. 2007. A Model Reference Adaptive Search Method for Global Optimization. Operations Research 55 (3): 549--568.
[23]
Juditsky, A., G. Lan, A. Nemirovski, and A. Shapiro. 2007. Stochastic approximation approach to stochastic programming. SIAM Journal on Optimization. Submitted.
[24]
Kiefer, J., and J. Wolfowitz. 1952. Stochastic estimation of the maximum of a regression function. Annals of Mathematical Statistics 23:462--466.
[25]
Kim, S. 2006. Gradient-based simulation optimization. In Proceedings of the 2006 Winter Simulation Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 159--167. Piscataway NJ: IEEE.
[26]
Kushner, H. J., and G. G. Yin. 2003. Stochastic approximation and recursive algorithms and applications. 2nd ed. New York: Springer-Verlag.
[27]
Law, A. M. 2007. Simulation modeling and analysis. 4th ed. New York: McGraw-Hill.
[28]
Lindvall, T. 1992. Lectures on the coupling method. New York: Wiley.
[29]
Mak, W. K., D. P. Morton, and R. K. Wood. 1999. Monte Carlo bounding techniques for determining solution quality in stochastic programs. Operations Research Letters 24:47--56.
[30]
Norkin, V. I., G. C. Pflug, and A. Ruszczyński. 1998. A branch and bound method for stochastic global optimization. Mathematical Programming 83:425--450.
[31]
Pasupathy, R. 2008. On choosing parameters in retrospective approximation algorithms for stochastic root finding and simulation-optimization. Operations Research. To appear.
[32]
Polak, E., and J. O. Royset. 2008. Efficient sample sizes in stochastic nonlinear programming. Journal of Computational and Applied Mathematics 217 (2): 301--310.
[33]
Polyak, B. T., and A. B. Juditsky. 1992. Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization 30:838--855.
[34]
Robbins, H., and S. Monro. 1951. A stochastic approximation method. Annals of Mathematical Statistics 22:400--407.
[35]
Robinson, S. M. 1996. Analysis of sample-path optimization. Mathematics of Operations Research 21:513--528.
[36]
Rubinstein, R. Y., and D. P. Kroese. 2004. The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning. New York: Springer-Verlag.
[37]
Rubinstein, R. Y., and A. Shapiro. 1993. Discrete event systems: Sensitivity analysis and stochastic optimization by the score function method. Chichester: Wiley.
[38]
Ruppert, D. 1985. A Newton-Raphson version of the multivariate Robbins-Monro procedure. Annals of Statistics 13:236--245.
[39]
Ruppert, D. 1991. Stochastic approximation. In Handbook of Sequential Analysis, ed. B. K. Ghosh and P. K. Sen, 503--529. New York: Marcel Dekker.
[40]
Shapiro, A. 1993. Asymptotic behavior of optimal solutions in stochastic programming. Mathematics of Operations Research 18:829--845.
[41]
Shapiro, A. 2003. Monte Carlo sampling methods. In Stochastic Programming, ed. A. Ruszczynski and A. Shapiro, Handbooks in Operations Research and Management Science. Elsevier.
[42]
Spall, J. C. 2000. Adaptive stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control 45:1839--1853.
[43]
Thorisson, H. 2000. Coupling, stationarity, and regeneration. New York, NY: Springer.
[44]
Verweij, B., S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro. 2003. The sample average approximation method applied to stochastic routing problems: A computational study. Computational Optimization and Applications 24:289--333.

Cited By

View all
  • (2011)The stochastic root-finding problemACM Transactions on Modeling and Computer Simulation10.1145/1921598.192160321:3(1-23)Online publication date: 4-Feb-2011
  • (2010)Convergence properties of direct search methods for stochastic optimizationProceedings of the Winter Simulation Conference10.5555/2433508.2433628(1003-1011)Online publication date: 5-Dec-2010
  • (2009)Better simulation metamodelingWinter Simulation Conference10.5555/1995456.1995478(119-133)Online publication date: 13-Dec-2009

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '08: Proceedings of the 40th Conference on Winter Simulation
December 2008
3189 pages
ISBN:9781424427086

Sponsors

  • IIE: Institute of Industrial Engineers
  • INFORMS-SIM: Institute for Operations Research and the Management Sciences: Simulation Society
  • ASA: American Statistical Association
  • IEEE/SMC: Institute of Electrical and Electronics Engineers: Systems, Man, and Cybernetics Society
  • SIGSIM: ACM Special Interest Group on Simulation and Modeling
  • NIST: National Institute of Standards and Technology
  • (SCS): The Society for Modeling and Simulation International

Publisher

Winter Simulation Conference

Publication History

Published: 07 December 2008

Check for updates

Qualifiers

  • Research-article

Conference

WSC08
Sponsor:
  • IIE
  • INFORMS-SIM
  • ASA
  • IEEE/SMC
  • SIGSIM
  • NIST
  • (SCS)
WSC08: Winter Simulation Conference
December 7 - 10, 2008
Florida, Miami

Acceptance Rates

WSC '08 Paper Acceptance Rate 249 of 304 submissions, 82%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2011)The stochastic root-finding problemACM Transactions on Modeling and Computer Simulation10.1145/1921598.192160321:3(1-23)Online publication date: 4-Feb-2011
  • (2010)Convergence properties of direct search methods for stochastic optimizationProceedings of the Winter Simulation Conference10.5555/2433508.2433628(1003-1011)Online publication date: 5-Dec-2010
  • (2009)Better simulation metamodelingWinter Simulation Conference10.5555/1995456.1995478(119-133)Online publication date: 13-Dec-2009

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media