[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1991116.1991130guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Three dimensional simulation of heat transfer problem after cemented hip replacement

Published: 28 April 2011 Publication History

Abstract

Total hip replacement involves cement flow interacting with other variables causing heat in the femoral canal. Understanding of heat transfer during cooling after cemented hip replacement is very essential for the surgery. Therefore, this research presents mathematical model and numerical simulation of heat transfer during cooling after cemented hip replacement. The artificial domain is constructed based on real domain using a set of CT scan data of the 65 years old patient. The governing equations are the classical heat transfer equations. The model is solved by finite element method. The temperature across multi-layers of the right artificial domain with implant was carried out.

References

[1]
G. Bergmann, F. Graichen, A. Rohlmann, N. Verdonschot and G. H. van Lenthe, Frictional heating of total hip implants Part 2: finite element study, Journal of Biomechanics. 34, 2001, pp. 429-435.
[2]
A. Borzacchiello, L. Ambrosio, L. Nicolais, E. J. Harper, K. E. Tanner and W. Bonfield, Comparison between the polymerization behavior of a new bone cement and a commercial one: modeling and in vitro analysis, Journal of Materials Science Materials in Medicine. 9, 1998, pp. 835- 838.
[3]
S. Biyikli, M. F. Modest and R. Tarr, Measurements of thermal properties for human femora, Journal of Biomedical Materials Research. 20, 1986, pp. 1335-1345.
[4]
R. Clattenburg, J. Cohen, S. Conner and N. Cook, Thermal properties of cancellous bone, Journal of Biomedical Materials Research. 9, 1975, pp. 169-182.
[5]
N. J. Dunne and J. F. Orr, Curing characteristics of acrylic bone cement, Journal of materials science: materials in medicine. 13, 2002, pp. 17- 22.
[6]
H. Eskil, Modelling heat transfer in a bonecement-prosthesis system, Journal of Biomechanics. 36, 2003, pp. 787-795.
[7]
C.-C. Hu, J.-J. Liau, C.-Y. Lung, C.-H. Huanga and C.-K. Cheng, A Two-dimensional finite element model for frictional heating analysis of total hip prosthesis, Materials Science and Engineering. 17, 2001, pp. 11-18.
[8]
R. Huiskes, Some fundamental aspects of human joint replacement. Analyses of stresses and heat conduction in bone-prosthesis structures, Acta Orthop Scand Suppl. 185, 1980, pp. 1-208.
[9]
D. Ikeda, M. Saito, A. Murakami, T. Shibuya, K. Hino and T. Nakashima, Mechanical evaluation of a bio-active bone cement for total hip arthroplasty, Medical and Biological Engineering and Computing. 38, 2000, pp. 401-405.
[10]
G. Lewis, Properties of Acrylic Bone Cement: State of the Art Review, Journal of Biomedical Materials Research. 38, 1998, pp. 155-182.
[11]
C. Li, S. Kotha, C. H. Huang, J. Mason, D. Yakimicki and M. Hawkins, Finite element thermal analysis of bone cement for joint replacements, Journal of Biomechanical Engineering. 125, 2003, pp. 315-322.
[12]
A. Maffezzoli, D. Ronca, G. Guida, I. Pochini and L. Nicolais, In-situ polymerization behaviour of bone cements, Journal of Mater Science Mater Medicine. 8, 1997, pp. 75-83.
[13]
S. Mazzullo, M. Paolini and C. Verdi, Numerical simulation of thermal bone necrosis during cementation of femoral prostheses, Journal of Mathematical Biology. 29, 1991, pp. 475-494.
[14]
B. Mjöberg, H. Pettersson, R. Rosenqvist and A. Rydholm, Bone cement thermal injury and the radiolucent zone, Acta Orthopaedica Scandinavica. 55, 1984, pp. 597-600.
[15]
G. P. Nikishkov, Programming Finite Elements in Java, Springer, 2010.
[16]
J. Okrajni, M. Plaza and S. Ziemba, Computer modelling of the heat flow in surgical cement during endoprosthesoplasty, Journal of Achievements in Materials and Manufacturing Engineering. 20, 2007.
[17]
M. A. Pérez, N. Nuno, A. Madrala, J. M. García-Aznar and M. Doblar, Computational modelling of bone cement polymerization: temperature and residual stresses, Computers in Biology and Medicine. 39, 2009, pp. 751-759.
[18]
M. Stanczyk and J. J. Telega, Modelling of heat transfer in biomechanics a review part II. orthopaedics, Acta of Bioengineering and Biomechanics. 4, 2002.
[19]
M. Stanczyk, Study on modelling of PMMA bone cement polymerisation, Journal of Biomechanics. 38, 2005, pp. 1397-1403.
[20]
S. Toksvig-Larsen, H. Franzen and L. Ryd, Cement interface temperature in hip arthroplasty, Acta Orthopaedica Scandinavica. 62, 1991, pp. 102-105.
[21]
W. R. Walsh, M. J. Svehla, J. Russell, M. Saito, T. Nakashima, R. M. Gillies, W. Bruce and R. Hori, Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness, Biomaterials. 25, 2004, pp. 4929-4934.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
F-and-B'11: Proceedings of the 4th WSEAS international conference on Finite differences - finite elements - finite volumes - boundary elements
April 2011
160 pages
ISBN:9789604742981

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Stevens Point, Wisconsin, United States

Publication History

Published: 28 April 2011

Author Tags

  1. femur
  2. finite element method
  3. heat transfer
  4. hip replacement
  5. implant
  6. mathematical modeling

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media