Abstract
A new bio-active bone cement, known as CAP, has been developed as an alternative to acrylic bone cement. CAP has improved mechanical properties, with a high modulus that is over five times that of PMMA. The effects of this high modulus are examined by finite element analysis, when the CAP is used in place of PMMA to fix the femoral component in total hip prostheses. The results show a higher tensile stress of 8.76 MPa in the CAP cement, compared with 1.99 MPa in the PMMA cement. However, it is also shown that CAP has a superior fatigue strength of approximately 40 MPa, obtained from a cyclic loading test.
Similar content being viewed by others
References
Beaumont, P. W. R., andPlumpton, B. (1977): ‘The strength of acrylic bone cements and acrylic cement-stainless steel interfaces’,J. Mater. Sci.,12, pp. 1853–1856
Charnley, J. andKettlewell, J. (1965): ‘The elimination of slip between prosthesis and femur’,J. Bone Joint Surg.,47-B, pp. 56–60
Crowninshield, R. D., Brand, R. A., Johnston, R. C., andMilroy, J. C. (1980): ‘Femoral component stem design in total hip arthroplasty’J. Bone Joint Surg.,62-A, pp. 68–78
Frankenburg, E. P., Hoffler, C. E., Shibuya, T., Saito, M., Lavagnino, M., Baker, J. A., andGoldstein, S. A. (1999): ‘Long term evaluation of a hydroxyapatite composite cement in total hip arthroplasties’Trans Orthop. Res. Soc.,24, p. 185
Fujita, H., Nakamura, T., Tamura, J., Kobayashi, M., Katsura, Y., Kokubo, T., andKikutani, T. (1998): ‘Bioactive bone cement: effect of the amount of glass-ceramic powder on bone-bonding strength’,J. Biomed. Mater. Res.,40, pp. 145–152
Ishihara, K., Arai, H., Nakabayashi, N., Morita, S., andFuruya, K. (1992): ‘Adhesive bone cement containing hydroxyapatite particle as bone compatible filler’,J. Biomed. Mater. Res.,26, pp. 937–945
Huiskes, R. (1990): ‘The various stress patterns of press-fit, ingrown, and cemented femoral stems’,Clin. Orthop.,261, pp. 27–38
Jasty, M., Jensen, N. F., andHarris, W. H. (1984): ‘Porosity measurements in centrifuged and uncentrifuged commercial bone cement preparations’. Trans. 2nd World Cong. Biomater., 10th Ann. Meet. Soc. Biomater.,7, p. 46
Pilliar, R. M. Blackwell, Macnab, R. I., andCameron, H. U. (1976): ‘Carbon fiber-reinforced bone cement in orthopedic surgery’,J. Biomed. Mater. Res.,10, pp. 893–906
Saha, S. andPal, S. (1984): ‘Mechanical properties of bone cement: A review’,J. Biomed. Mater. Res.,18, pp. 435–462
Saito, M., Maruoka, A., Mori, T., Sugano, N., andHino, K. (1994): ‘Experimental studies on a new bioactive bone cement: hydroxyapatite composite resin’,Biomaterials,15, pp. 156–160
Saito, M., Murakami, A., Yamada, S. Ikeda, D., Shibuya, T., Sugano, N., Nakashima, T., andHino, K. (1995): ‘Mechanical properties of bioactive cement for total hip replacement’. Proc. 4th J. Int. SAMPE Symposium, pp. 25–28
Svesnsson, N. L., Valliappan, S., andWood R. D. (1977): ‘Stress analysis of human femur with implanted Charnley prosthesis’,J. Bio-mechanics,10, pp. 581–588
Weightman, B., Freeman, M. A. R., Revell, P. A. Branden, M., Albrektsson, B. E. J., andCarlson, L. V. (1987): ‘The mechanical properties of cement and loosening of the femoral component of hip replacement’,J. Bone Joint Surg.,69-B, pp. 558–564
deWijn, J. R., Slooff, T. J. J. H., andDriessens, F. C. M. (1975): ‘Characterization of bone cement’,Acta Orthop. Scand.,46, pp. 38–51
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ikeda, D., Saito, M., Murakami, A. et al. Mechanical evaluation of a bio-active bone cement for total hip arthroplasty. Med. Biol. Eng. Comput. 38, 401–405 (2000). https://doi.org/10.1007/BF02345009
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02345009