• Marsala M, Mantzaflaris A, Mourrain B, Whyman S and Gammon M. (2024). From CAD to representations suitable for isogeometric analysis: a complete pipeline. Engineering with Computers. 10.1007/s00366-024-02065-0. 40:6. (3429-3447). Online publication date: 1-Dec-2024.

    https://link.springer.com/10.1007/s00366-024-02065-0

  • Feng Y, Shen L, Li X, Yuan C and Jiang X. Patching Non-Uniform Extraordinary Points. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2023.3271669. 30:8. (4683-4693).

    https://ieeexplore.ieee.org/document/10113186/

  • Uwitije R, Wang X and Deng J. (2024). Nonlinear Weighted Subdivision Schemes. Communications in Mathematics and Statistics. 10.1007/s40304-023-00383-1.

    https://link.springer.com/10.1007/s40304-023-00383-1

  • Wang X and Ma W. (2024). Rational reparameterization of unstructured quadrilateral meshes for isogeometric analysis with optimal convergence. Computers & Mathematics with Applications. 151:C. (304-325). Online publication date: 1-Dec-2023.

    https://doi.org/10.1016/j.camwa.2023.09.050

  • Gérot C and Ivrissimtzis I. (2023). Bivariate non-uniform subdivision schemes based on L-systems. Applied Mathematics and Computation. 457:C. Online publication date: 15-Nov-2023.

    https://doi.org/10.1016/j.amc.2023.128156

  • Yang X. (2023). Point-normal subdivision curves and surfaces. Computer Aided Geometric Design. 10.1016/j.cagd.2023.102207. 104. (102207). Online publication date: 1-Jul-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0167839623000390

  • Peng K, Tan J and Zhang L. (2023). Polynomial-Based Non-Uniform Ternary Interpolation Surface Subdivision on Quadrilateral Mesh. Mathematics. 10.3390/math11020486. 11:2. (486).

    https://www.mdpi.com/2227-7390/11/2/486

  • Moulaeifard M, Wellmann F, Bernard S, de la Varga M and Bommes D. (2022). Subdivide and Conquer: Adapting Non-Manifold Subdivision Surfaces to Surface-Based Representation and Reconstruction of Complex Geological Structures. Mathematical Geosciences. 10.1007/s11004-022-10017-x. 55:1. (81-111). Online publication date: 1-Jan-2023.

    https://link.springer.com/10.1007/s11004-022-10017-x

  • Zhang J, Tian Y and Li X. (2022). Improved non-uniform subdivision scheme with modified Eigen-polyhedron. Visual Computing for Industry, Biomedicine, and Art. 10.1186/s42492-022-00115-2. 5:1. Online publication date: 1-Dec-2022.

    https://vciba.springeropen.com/articles/10.1186/s42492-022-00115-2

  • Wei X, Li X, Qian K, Hughes T, Zhang Y and Casquero H. (2022). Analysis-suitable unstructured T-splines: Multiple extraordinary points per face. Computer Methods in Applied Mechanics and Engineering. 10.1016/j.cma.2021.114494. 391. (114494). Online publication date: 1-Mar-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0045782521007039

  • Wood M, Rendall T, Allen C, Kedward L, Taylor N, Fincham J and Leppard N. (2022). Subdivision Multi-Resolution Systems for Three-dimensional Aerodynamic Optimisation AIAA SCITECH 2022 Forum. 10.2514/6.2022-1864. 978-1-62410-631-6. Online publication date: 3-Jan-2022.

    https://arc.aiaa.org/doi/10.2514/6.2022-1864

  • Wei X, Li X, Zhang Y and Hughes T. (2021). Tuned hybrid nonuniform subdivision surfaces with optimal convergence rates. International Journal for Numerical Methods in Engineering. 10.1002/nme.6608. 122:9. (2117-2144). Online publication date: 15-May-2021.

    https://onlinelibrary.wiley.com/doi/10.1002/nme.6608

  • (2021). References. Geometric Modeling of Fractal Forms for CAD. 10.1002/9781119831754.refs. (223-226). Online publication date: 6-Apr-2021.

    https://onlinelibrary.wiley.com/doi/10.1002/9781119831754.refs

  • Alam M and Li X. (2020). Non-Uniform Doo-Sabin Subdivision Surface via Eigen Polygon. Journal of Systems Science and Complexity. 10.1007/s11424-020-9264-z. 34:1. (3-20). Online publication date: 1-Feb-2021.

    https://link.springer.com/10.1007/s11424-020-9264-z

  • Tian Y, Li X and Chen F. (2020). Non‐Uniform Subdivision Surfaces with Sharp Features. Computer Graphics Forum. 10.1111/cgf.14014. 39:6. (232-242). Online publication date: 1-Sep-2020.

    https://onlinelibrary.wiley.com/doi/10.1111/cgf.14014

  • Gu L, Zheng J, Dang C and Wu Z. (2019). An improved algorithm based on $\sqrt {3}$ subdivision for micro surface modeling. The International Journal of Advanced Manufacturing Technology. 10.1007/s00170-019-04111-4. 105:12. (4909-4918). Online publication date: 1-Dec-2019.

    http://link.springer.com/10.1007/s00170-019-04111-4

  • Liu Y, Zhao G, Zavalnyi O and Xiao W. (2019). STEP-NC compliant data model for freeform surface manufacturing based on T-spline. International Journal of Computer Integrated Manufacturing. 10.1080/0951192X.2019.1667029. 32:10. (979-995). Online publication date: 3-Oct-2019.

    https://www.tandfonline.com/doi/full/10.1080/0951192X.2019.1667029

  • Ma Y and Ma W. (2019). Subdivision Schemes for Quadrilateral Meshes with the Least Polar Artifact in Extraordinary Regions. Computer Graphics Forum. 10.1111/cgf.13822. 38:7. (127-139). Online publication date: 1-Oct-2019.

    https://onlinelibrary.wiley.com/doi/10.1111/cgf.13822

  • Gu L, Zheng J, Dang C, Wu Z and Fu B. (2018). A Novel Loop Subdivision for Continuity Surface. Advances in Brain Inspired Cognitive Systems. 10.1007/978-3-030-00563-4_76. (780-789).

    http://link.springer.com/10.1007/978-3-030-00563-4_76

  • Greco F, Barendrecht P, Coox L, Atak O and Desmet W. (2017). Finite element analysis enhanced with subdivision surface boundary representations. Finite Elements in Analysis and Design. 137:C. (56-72). Online publication date: 1-Dec-2017.

    https://doi.org/10.1016/j.finel.2017.09.002

  • Süß M, Herzog M, Schöne C and Stelzer R. (2017). Effiziente Rekonstruktion topologieoptimierter Daten im CAE/CAM-Prozess. Rapid.Tech – International Trade Show & Conference for Additive Manufacturing. 10.1007/978-3-446-45460-6_5. (67-79).

    https://www.springerprofessional.de/doi/10.1007/978-3-446-45460-6_5

  • Estellers V and Soatto S. (2017). Adaptive Discretizations for Non-smooth Variational Vision. Scale Space and Variational Methods in Computer Vision. 10.1007/978-3-319-58771-4_50. (629-642).

    http://link.springer.com/10.1007/978-3-319-58771-4_50

  • Shen J, Kosinka J, Sabin M and Dodgson N. (2016). Converting a CAD model into a non-uniform subdivision surface. Computer Aided Geometric Design. 48:C. (17-35). Online publication date: 1-Nov-2016.

    https://doi.org/10.1016/j.cagd.2016.07.003

  • Antonelli M, Beccari C and Casciola G. (2016). High quality local interpolation by composite parametric surfaces. Computer Aided Geometric Design. 46:C. (103-124). Online publication date: 1-Aug-2016.

    https://doi.org/10.1016/j.cagd.2016.06.005

  • Li X, Finnigan G and Sederberg T. (2016). G1 non-uniform Catmull-Clark surfaces. ACM Transactions on Graphics. 35:4. (1-8). Online publication date: 11-Jul-2016.

    https://doi.org/10.1145/2897824.2925924

  • Yang X. (2016). Matrix weighted rational curves and surfaces. Computer Aided Geometric Design. 42:C. (40-53). Online publication date: 1-Feb-2016.

    https://doi.org/10.1016/j.cagd.2015.11.005

  • Kovacs D, Bisceglio J and Zorin D. (2015). Dyadic T-mesh subdivision. ACM Transactions on Graphics. 34:4. (1-12). Online publication date: 27-Jul-2015.

    https://doi.org/10.1145/2766972

  • Shen J, Kosinka J, Sabin M and Dodgson N. (2014). Conversion of trimmed NURBS surfaces to Catmull-Clark subdivision surfaces. Computer Aided Geometric Design. 31:7. (486-498). Online publication date: 1-Oct-2014.

    https://doi.org/10.1016/j.cagd.2014.06.004

  • Kosinka J, Sabin M and Dodgson N. (2014). Creases and boundary conditions for subdivision curves. Graphical Models. 76:5. (240-251). Online publication date: 1-Sep-2014.

    https://doi.org/10.1016/j.gmod.2014.03.004

  • Wang Y, Hao W, Ning X, Shi Z and Zhao M. An Adjustable Polygon Connecting Method for 3D Mesh Refinement. Proceedings of the 2014 International Conference on Virtual Reality and Visualization. (202-207).

    https://doi.org/10.1109/ICVRV.2014.20

  • Kosinka J, Sabin M and Dodgson N. Semi-sharp creases on subdivision curves and surfaces. Proceedings of the Symposium on Geometry Processing. (217-226).

    https://doi.org/10.1111/cgf.12447

  • Kosinka J, Sabin M and Dodgson N. (2014). Subdivision Surfaces with Creases and Truncated Multiple Knot Lines. Computer Graphics Forum. 33:1. (118-128). Online publication date: 1-Feb-2014.

    https://doi.org/10.1111/cgf.12258

  • Zhao X, Zhang C, Xu L, Yang B and Feng Z. (2013). IGA-based point cloud fitting using B-spline surfaces for reverse engineering. Information Sciences: an International Journal. 245. (276-289). Online publication date: 1-Oct-2013.

    https://doi.org/10.1016/j.ins.2013.04.022

  • Beccari C, Casciola G and Romani L. (2013). Non-uniform non-tensor product local interpolatory subdivision surfaces. Computer Aided Geometric Design. 30:4. (357-373). Online publication date: 1-May-2013.

    https://doi.org/10.1016/j.cagd.2013.02.002

  • Scott M, Simpson R, Evans J, Lipton S, Bordas S, Hughes T and Sederberg T. (2013). Isogeometric boundary element analysis using unstructured T-splines. Computer Methods in Applied Mechanics and Engineering. 10.1016/j.cma.2012.11.001. 254. (197-221). Online publication date: 1-Feb-2013.

    https://linkinghub.elsevier.com/retrieve/pii/S0045782512003386

  • Palmer P, Mir A and González-Hidalgo M. (2013). Deformable Objects Representation. Deformation Models. 10.1007/978-94-007-5446-1_1. (3-47).

    https://link.springer.com/10.1007/978-94-007-5446-1_1

  • Jingtang L, Gang Z, Dunming T and Junjie X. (2012). Real-time virtual hand controlling using OpenSceneGraph 2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization (ICSEM). 10.1109/ICSSEM.2012.6340723. 978-1-4673-0915-8. (264-268).

    http://ieeexplore.ieee.org/document/6340723/

  • Ma W and Wang H. (2012). SMI 2012. Computers and Graphics. 36:5. (321-328). Online publication date: 1-Aug-2012.

    https://doi.org/10.1016/j.cag.2012.03.009

  • Li B and Qin H. (2012). Component-aware tensor-product trivariate splines of arbitrary topology. Computers & Graphics. 10.1016/j.cag.2012.03.007. 36:5. (329-340). Online publication date: 1-Aug-2012.

    http://linkinghub.elsevier.com/retrieve/pii/S0097849312000465

  • Li X, Huang Z and Liu Z. (2012). A Geometric Approach for Multi-Degree Spline. Journal of Computer Science and Technology. 10.1007/s11390-012-1268-2. 27:4. (841-850). Online publication date: 1-Jul-2012.

    http://link.springer.com/10.1007/s11390-012-1268-2

  • Cashman T. (2012). Beyond Catmull–Clark? A Survey of Advances in Subdivision Surface Methods. Computer Graphics Forum. 31:1. (42-61). Online publication date: 1-Feb-2012.

    https://doi.org/10.1111/j.1467-8659.2011.02083.x

  • Feiniu Yuan , Yanling Chi , Su Huang and Jimin Liu . Modeling n-Furcated Liver vessels From a 3-D Segmented Volume Using Hole-Making and Subdivision Methods. IEEE Transactions on Biomedical Engineering. 10.1109/TBME.2011.2176728. 59:2. (552-561).

    http://ieeexplore.ieee.org/document/6084729/

  • Huang Z and Wang G. (2011). Non-uniform recursive Doo-Sabin surfaces. Computer-Aided Design. 43:11. (1527-1533). Online publication date: 1-Nov-2011.

    https://doi.org/10.1016/j.cad.2011.08.016

  • Gu L, Zheng J and Dang C. A Modification Based on Butterfly Subdivision Scheme. Proceedings of the 2011 Sixth International Conference on Image and Graphics. (472-476).

    https://doi.org/10.1109/ICIG.2011.161

  • Beccari C, Casciola G and Romani L. (2011). Polynomial-based non-uniform interpolatory subdivision with features control. Journal of Computational and Applied Mathematics. 235:16. (4754-4769). Online publication date: 1-Jun-2011.

    https://doi.org/10.1016/j.cam.2010.09.014

  • Li Qingguang and Li Dehua . (2011). A contour-based surface modeling approach for scattered human body data 2011 International Conference on Electric Information and Control Engineering (ICEICE). 10.1109/ICEICE.2011.5777523. 978-1-4244-8036-4. (981-984).

    http://ieeexplore.ieee.org/document/5777523/

  • Han L, Yu Tao and Xi Hai-yan . (2010). Subdivision for generating NURBS curves and quadrics 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). 10.1109/ICCASM.2010.5620789. 978-1-4244-7235-2. (V8-496-V8-500).

    http://ieeexplore.ieee.org/document/5620789/

  • Müller K, Fünfzig C, Reusche L, Hansford D, Farin G and Hagen H. (2010). Dinus. ACM Transactions on Graphics. 29:3. (1-21). Online publication date: 1-Jun-2010.

    https://doi.org/10.1145/1805964.1805969

  • Han X and Wan H. A framework for virtual hand haptic interaction. Transactions on edutainment IV. (229-240).

    /doi/10.5555/1880470.1880489

  • Tokuyama Y, Konno K, Sone J and R.P.C. J. (2010). Local Modification of Subdivision Surfaces Based on Curved Mesh. The Journal of the Society for Art and Science. 10.3756/artsci.9.1. 9:1. (1-9).

    http://www.jstage.jst.go.jp/article/artsci/9/1/9_1_1/_article/-char/ja/

  • Cirak F and Long Q. (2010). Advances in Subdivision Finite Elements for Thin Shells. New Trends in Thin Structures: Formulation, Optimization and Coupled Problems. 10.1007/978-3-7091-0231-2_8. (205-227).

    http://link.springer.com/10.1007/978-3-7091-0231-2_8

  • Han X and Wan H. (2010). A Framework for Virtual Hand Haptic Interaction. Transactions on Edutainment IV. 10.1007/978-3-642-14484-4_19. (229-240).

    http://link.springer.com/10.1007/978-3-642-14484-4_19

  • Karčiauskas K and Peters J. (2009). Adjustable speed surface subdivision. Computer Aided Geometric Design. 26:9. (962-969). Online publication date: 1-Dec-2009.

    https://doi.org/10.1016/j.cagd.2009.07.006

  • Ma W and Wang H. (2009). Loop subdivision surfaces interpolating B-spline curves. Computer-Aided Design. 41:11. (801-811). Online publication date: 1-Nov-2009.

    https://doi.org/10.1016/j.cad.2009.03.011

  • Gang H and Wenhe L. Research on Nonuniform Combined Subdivision Scheme. Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation - Volume 04. (616-620).

    https://doi.org/10.1109/ICICTA.2009.863

  • Yang J, Zhou M, Wen J and She H. (2009). Realization of Catmull-Clark Subdivision Algorithm Based on Guadrilateral Network 2009 Symposium on Photonics and Optoelectronics. 10.1109/SOPO.2009.5230271. 978-1-4244-4412-0. (1-4).

    http://ieeexplore.ieee.org/document/5230271/

  • Cashman T, Augsdörfer U, Dodgson N and Sabin M. NURBS with extraordinary points. ACM SIGGRAPH 2009 papers. (1-9).

    https://doi.org/10.1145/1576246.1531352

  • Cashman T, Augsdörfer U, Dodgson N and Sabin M. (2009). NURBS with extraordinary points. ACM Transactions on Graphics. 28:3. (1-9). Online publication date: 27-Jul-2009.

    https://doi.org/10.1145/1531326.1531352

  • Wan H, Feifei Chen and Xiaoxia Han . (2009). A 4-layer flexible virtual hand model for haptic interaction 2009 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems (VECIMS). 10.1109/VECIMS.2009.5068890. 978-1-4244-3808-2. (185-190).

    http://ieeexplore.ieee.org/document/5068890/

  • Xinrong Hu , Xiaoqin Du , Cui Shuqin and Zhongmin Deng . (2009). Geometrical model smoothing with multi-curvature 2009 International Conference on Industrial Mechatronics and Automation (ICIMA 2009). 10.1109/ICIMA.2009.5156659. 978-1-4244-3817-4. (448-451).

    http://ieeexplore.ieee.org/document/5156659/

  • Hu X, Xiong N, Kim T, Shuqin C, Wang H and Wang J. Mesh Smoothing for Parameterized Body Model with Loop Subdivision Algorithm. Proceedings of the 2009 International e-Conference on Advanced Science and Technology. (56-59).

    https://doi.org/10.1109/AST.2009.13

  • Wang H and Tang K. (2009). Biorthogonal wavelet construction for hybrid quad/triangle meshes. The Visual Computer: International Journal of Computer Graphics. 25:4. (349-366). Online publication date: 27-Feb-2009.

    https://doi.org/10.1007/s00371-008-0300-6

  • Lai S and Cheng F. An Iterative Method for Fast Mesh Denoising. Proceedings of the 4th International Symposium on Advances in Visual Computing, Part II. (1034-1043).

    https://doi.org/10.1007/978-3-540-89646-3_103

  • Zhang H, Qin G, Qin K and Sun H. (2009). A Biorthogonal Wavelet Approach based on Dual Subdivision. Computer Graphics Forum. 10.1111/j.1467-8659.2008.01327.x. 27:7. (1815-1822). Online publication date: 1-Oct-2008.

    https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2008.01327.x

  • Sederberg T, Finnigan G, Li X, Lin H and Ipson H. Watertight trimmed NURBS. ACM SIGGRAPH 2008 papers. (1-8).

    https://doi.org/10.1145/1399504.1360678

  • Sederberg T, Finnigan G, Li X, Lin H and Ipson H. (2008). Watertight trimmed NURBS. ACM Transactions on Graphics. 27:3. (1-8). Online publication date: 1-Aug-2008.

    https://doi.org/10.1145/1360612.1360678

  • Cai Y, Indhumathi C, Chen W and Zheng J. VR bio X games. Transactions on edutainment I. (278-287).

    /doi/10.5555/1809375.1809398

  • Catalano C, Ivrissimtzis I and Nasri A. (2008). Subdivision Surfaces and Applications. Shape Analysis and Structuring. 10.1007/978-3-540-33265-7_4. (115-143).

    http://link.springer.com/10.1007/978-3-540-33265-7_4

  • Musialski P, Tobler R, Maierhofer S and Wüthrich C. Multiresolution geometric details on subdivision surfaces. Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia. (211-218).

    https://doi.org/10.1145/1321261.1321299

  • Cashman T, Dodgson N and Sabin M. Non-uniform B-spline subdivision using refine and smooth. Proceedings of the 12th IMA international conference on Mathematics of surfaces XII. (121-137).

    /doi/10.5555/1770873.1770881

  • Cashman T, Dodgson N and Sabin M. Non-uniform B-Spline Subdivision Using Refine and Smooth. Mathematics of Surfaces XII. 10.1007/978-3-540-73843-5_8. (121-137).

    http://link.springer.com/10.1007/978-3-540-73843-5_8

  • Pla-Garcia N, Vigo-Anglada M and Cotrina-Navau J. (2006). N-sided patches with B-spline boundaries. Computers and Graphics. 30:6. (959-970). Online publication date: 1-Dec-2006.

    https://doi.org/10.1016/j.cag.2006.05.001

  • Wang H, Qin K and Tang K. (2006). Efficient wavelet construction with Catmull–Clark subdivision. The Visual Computer: International Journal of Computer Graphics. 22:9. (874-884). Online publication date: 7-Sep-2006.

    https://doi.org/10.1007/s00371-006-0074-7

  • Zorin D. Modeling with multiresolution subdivision surfaces. ACM SIGGRAPH 2006 Courses. (30-50).

    https://doi.org/10.1145/1185657.1185673

  • Li W, Ray N and Lévy B. Automatic and interactive mesh to T-spline conversion. Proceedings of the fourth Eurographics symposium on Geometry processing. (191-200).

    /doi/10.5555/1281957.1281982

  • Cheng F, Chen G and Yong J. Subdivision depth computation for extra-ordinary catmull-clark subdivision surface patches. Proceedings of the 24th international conference on Advances in Computer Graphics. (404-416).

    https://doi.org/10.1007/11784203_35

  • Müller K, Reusche L and Fellner D. (2006). Extended subdivision surfaces. ACM Transactions on Graphics. 25:2. (268-292). Online publication date: 1-Apr-2006.

    https://doi.org/10.1145/1138450.1138455

  • Karam H, Ghaleb F and El-Latif Y. (2006). Towards fast and smooth subdivision surface reconstruction. International Journal of Computers and Applications. 28:2. (170-176). Online publication date: 1-Apr-2006.

    https://doi.org/10.1080/1206212X.2006.11441801

  • Karam H, Ghaleb F and El-Latif Y. (2006). TOWARDS FAST AND SMOOTH SUBDIVISION SURFACE RECONSTRUCTION. International Journal of Computers and Applications. 10.2316/Journal.202.2006.2.202-1823. 28:2.

    http://www.actapress.com/PaperInfo.aspx?paperId=28371

  • Foskey M, Otaduy M and Lin M. ArtNova. ACM SIGGRAPH 2005 Courses. (188-es).

    https://doi.org/10.1145/1198555.1198619

  • Ma W. (2005). Subdivision surfaces for CAD-an overview. Computer-Aided Design. 37:7. (693-709). Online publication date: 1-Jun-2005.

    https://doi.org/10.1016/j.cad.2004.08.008

  • Mustafa G and Xuefeng L. (2005). A subdivision scheme for volumetric models. Applied Mathematics-A Journal of Chinese Universities. 10.1007/s11766-005-0054-0. 20:2. (213-224). Online publication date: 1-Jun-2005.

    http://link.springer.com/10.1007/s11766-005-0054-0

  • Yang X. (2005). Surface interpolation of meshes by geometric subdivision. Computer-Aided Design. 37:5. (497-508). Online publication date: 1-Apr-2005.

    https://doi.org/10.1016/j.cad.2004.10.008

  • Yong J and Cheng F. (2005). Adaptive Subdivision of Catmull-Clark Subdivision Surfaces. Computer-Aided Design and Applications. 10.1080/16864360.2005.10738373. 2:1-4. (253-261). Online publication date: 1-Jan-2005.

    http://www.cad-journal.net/files/vol_2/Vol2Nos1-4.html

  • Wang H and Qin K. (2004). Estimating subdivision depth of Catmull-Clark surfaces. Journal of Computer Science and Technology. 19:5. (657-664). Online publication date: 1-Sep-2004.

    https://doi.org/10.1007/BF02945592

  • Wan H, Luo Y, Gao S and Peng Q. Realistic virtual hand modeling with applications for virtual grasping. Proceedings of the 2004 ACM SIGGRAPH international conference on Virtual Reality continuum and its applications in industry. (81-87).

    https://doi.org/10.1145/1044588.1044603

  • Fangquan Chen , Youdong Ding , Jian Liu and Daming Wei . A novel non-stationary subdivision scheme for geometric modeling The Fourth International Conference onComputer and Information Technology, 2004. CIT '04.. 10.1109/CIT.2004.1357284. 0-7695-2216-5. (748-752).

    http://ieeexplore.ieee.org/document/1357284/

  • Nasri A, Abbas A and Hasbini I. Skinning Catmull-Clark Subdivision Surfaces with Incompatible Cross-Sectional Curves. Proceedings of the 11th Pacific Conference on Computer Graphics and Applications.

    /doi/10.5555/946250.946981

  • Sederberg T, Zheng J, Bakenov A and Nasri A. T-splines and T-NURCCs. ACM SIGGRAPH 2003 Papers. (477-484).

    https://doi.org/10.1145/1201775.882295

  • Sederberg T, Zheng J, Bakenov A and Nasri A. (2003). T-splines and T-NURCCs. ACM Transactions on Graphics. 22:3. (477-484). Online publication date: 1-Jul-2003.

    https://doi.org/10.1145/882262.882295

  • Alliez P, Laurent N, Sanson H and Schmitt F. (2003). Efficient view-dependent refinement of 3D meshes using sqrt{3}-subdivision. The Visual Computer: International Journal of Computer Graphics. 19:4. (205-221). Online publication date: 1-Jul-2003.

    https://doi.org/10.1007/s00371-002-0165-z

  • Cotrina-Navau J, Pla-Garcia N and Vigo-Anglada M. (2003). A Generic Approach to Free Form Surface Generation. Journal of Computing and Information Science in Engineering. 10.1115/1.1559579. 2:4. (294-301). Online publication date: 1-Dec-2002.

    https://asmedigitalcollection.asme.org/computingengineering/article/2/4/294/460070/A-Generic-Approach-to-Free-Form-Surface-Generation

  • Li G and Li H. (2002). Blending parametric patches with subdivision surfaces. Journal of Computer Science and Technology. 17:4. (498-506). Online publication date: 1-Jul-2002.

    https://doi.org/10.1007/BF02943290

  • Bertram M. Biorthogonal wavelets for subdivision volumes. Proceedings of the seventh ACM symposium on Solid modeling and applications. (72-82).

    https://doi.org/10.1145/566282.566296

  • Cotrina-Navau J, Pla-Garcia N and Vigo-Anglada M. A generic approach to free form surface generation. Proceedings of the seventh ACM symposium on Solid modeling and applications. (35-44).

    https://doi.org/10.1145/566282.566291

  • Foskey M, Otaduy M and Lin M. ArtNova: touch-enabled 3D model design IEEE Virtual Reality 2002. 10.1109/VR.2002.996514. 0-7695-1492-8. (119-126).

    http://ieeexplore.ieee.org/document/996514/

  • Tobler R, Maierhofer S and Wilkie A. A multiresolution mesh generation approach for procedural definition of complex geometry SMI. Shape Modeling International 2002. 10.1109/SMI.2002.1003526. 0-7695-1546-0. (35-271).

    http://ieeexplore.ieee.org/document/1003526/

  • Zheng Xu and Kondo K. Local subdivision process with Doo-Sabin subdivision surfaces SMI. Shape Modeling International 2002. 10.1109/SMI.2002.1003522. 0-7695-1546-0. (7-12).

    http://ieeexplore.ieee.org/document/1003522/

  • Miura K and Masuda H. Selective non-uniform subdivision 10th Pacific Conference on Computer Graphics and Applications. 10.1109/PCCGA.2002.1167900. 0-7695-1784-6. (457-459).

    http://ieeexplore.ieee.org/document/1167900/

  • Ehmann S, Gregory A and Lin M. (2001). A touch‐enabled system for multi‐resolution modeling and 3D painting‡. The Journal of Visualization and Computer Animation. 10.1002/vis.252. 12:3. (145-157). Online publication date: 1-Jul-2001.

    https://onlinelibrary.wiley.com/doi/10.1002/vis.252

  • Akleman E, Jianer Chen , Eryoldas F and Srinivasan V. Handle and hole improvement by using new corner cutting subdivision scheme with tension International Conference on Shape Modeling and Applications. 10.1109/SMA.2001.923373. 0-7695-0853-7. (32-41).

    http://ieeexplore.ieee.org/document/923373/

  • Xu Z and Kondo K. (2001). Fillet Operations with Recursive Subdivision Surfaces. Geometric Modelling. 10.1007/978-0-387-35490-3_19. (269-284).

    http://link.springer.com/10.1007/978-0-387-35490-3_19

  • Mandal C, Qin H and Vemuri B. (2000). A novel FEM-based dynamic framework for subdivision surfaces. Computer-Aided Design. 10.1016/S0010-4485(00)00037-3. 32:8-9. (479-497). Online publication date: 1-Aug-2000.

    https://linkinghub.elsevier.com/retrieve/pii/S0010448500000373

  • Biermann H, Levin A and Zorin D. Piecewise smooth subdivision surfaces with normal control. Proceedings of the 27th annual conference on Computer graphics and interactive techniques. (113-120).

    https://doi.org/10.1145/344779.344841

  • Mandal C, Qin H and Vemuri B. (2000). Dynamic Modeling of Butterfly Subdivision Surfaces. IEEE Transactions on Visualization and Computer Graphics. 6:3. (265-287). Online publication date: 1-Jul-2000.

    https://doi.org/10.1109/2945.879787

  • Gregory A, Ehmann S and Lin M. inTouch. Proceedings of the IEEE Virtual Reality 2000 Conference.

    /doi/10.5555/832288.835797

  • Gregory A, Ehmann S and Lin M. inTouch: interactive multiresolution modeling and 3D painting with a haptic interface IEEE Virtual Reality 2000. 10.1109/VR.2000.840362. 0-7695-0478-7. (45-52).

    http://ieeexplore.ieee.org/document/840362/

  • Akleman E, Chen J and Srinivasan V. A new paradigm for changing topology during subdivision modeling the Eighth Pacific Conference on Computer Graphics and Applications. 10.1109/PCCGA.2000.883941. 0-7695-0868-5. (192-201).

    http://ieeexplore.ieee.org/document/883941/

  • Hong Qin . FEM-based dynamic subdivision splines the Eighth Pacific Conference on Computer Graphics and Applications. 10.1109/PCCGA.2000.883940. 0-7695-0868-5. (184-191).

    http://ieeexplore.ieee.org/document/883940/

  • Weiyin Ma and Nailiang Zhao . (2000). Catmull-Clark surface fitting for reverse engineering applications Proceedings Geometric Modeling and Processing 2000. Theory and Applications. 10.1109/GMAP.2000.838259. 0-7695-0562-7. (274-283).

    http://ieeexplore.ieee.org/document/838259/

  • Nasri A. (2000). A polygonal approach for interpolating meshes of curves by subdivision surfaces Proceedings Geometric Modeling and Processing 2000. Theory and Applications. 10.1109/GMAP.2000.838258. 0-7695-0562-7. (262-273).

    https://ieeexplore.ieee.org/document/838258/

  • Schröder P. Opportunities for Subdivision-Based Multiresolution Modeling. Proceedings of the 7th Pacific Conference on Computer Graphics and Applications.

    /doi/10.5555/826028.826466

  • Qin K and Wang H. Eigenanalysis and Continuity of Non-Uniform Doo-Sabin Surfaces. Proceedings of the 7th Pacific Conference on Computer Graphics and Applications.

    /doi/10.5555/826028.826463

  • Weimer H and Warren J. Subdivision schemes for fluid flow. Proceedings of the 26th annual conference on Computer graphics and interactive techniques. (111-120).

    https://doi.org/10.1145/311535.311547

  • Wang X, Cheng F and Barsky B. Blending, smoothing and interpolation of irregular meshes using N-sided Varady patches. Proceedings of the fifth ACM symposium on Solid modeling and applications. (212-222).

    https://doi.org/10.1145/304012.304034

  • Khodakovsky A and Schröder P. Fine level feature editing for subdivision surfaces. Proceedings of the fifth ACM symposium on Solid modeling and applications. (203-211).

    https://doi.org/10.1145/304012.304033

  • Mandal C, Qin H and Vemuri B. A novel FEM-based dynamic framework for subdivision surfaces. Proceedings of the fifth ACM symposium on Solid modeling and applications. (191-202).

    https://doi.org/10.1145/304012.304031

  • Rosenfeld A. (1999). Image Analysis and Computer Vision. Computer Vision and Image Understanding. 74:1. (36-95). Online publication date: 1-Apr-1999.

    https://doi.org/10.1006/cviu.1999.0746

  • Kaihuai Qin and Huawei Wang . Eigenanalysis and continuity of non-uniform Doo-Sabin surfaces Proceedings. Seventh Pacific Conference on Computer Graphics and Applications. 10.1109/PCCGA.1999.803361. 0-7695-0293-8. (179-186,).

    http://ieeexplore.ieee.org/document/803361/

  • Schroder P. Opportunities for subdivision-based multiresolution modeling Proceedings. Seventh Pacific Conference on Computer Graphics and Applications. 10.1109/PCCGA.1999.803353. 0-7695-0293-8. (104-105).

    http://ieeexplore.ieee.org/document/803353/

  • Chiew-Lan Tai , Kia-Fock Loe , Barsky B and Yim-Hung Chan . A method for deforming polygonal shapes into smooth spline surface models 1999 IEEE International Conference on Information Visualization. 10.1109/IV.1999.781574. 0-7695-0210-5. (302-308).

    http://ieeexplore.ieee.org/document/781574/

  • Wenlong Dong , Jiankun Li and Kuo C. Refinement of 3D meshes by selective subdivision 6th International Conference on Image Processing (ICIP'99). 10.1109/ICIP.1999.819619. 0-7803-5467-2. (381-385).

    http://ieeexplore.ieee.org/document/819619/