Abstract
This paper presents an efficient biorthogonal wavelet construction with the generalized Catmull–Clark subdivision based on the lifting scheme. The subdivision wavelet construction scheme is applicable to all variants of Catmull–Clark subdivision, so it is more universal than the previous wavelet construction for the generalized bicubic B-spline subdivision. Because the analysis and synthesis algorithms of the wavelets are composed of a series of local and in-place lifting operations, they can be performed in linear time. The experiments have demonstrated the stability of the proposed wavelet analysis based on the ordinary Catmull–Clark subdivision. Moreover, the resulting Catmull–Clark subdivision wavelets have better fitting quality than the generalized bicubic B-spline subdivision wavelets at a similar computation cost.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bajaj, C., Schaefer, S., Warren, J. et al.: A subdivision scheme for hexahedral meshes. Vis. Comput. 18(5–6), 343–356 (2002)
Ball, A.A., Storry, D.J.T.: A matrix approach to the analysis of recursively generated B-spline surfaces. Comput. Aided Des. 18, 437–442 (1986)
Bertram, M., Duchaineau, M., Hamann, B. et al.: Bicubic subdivision-surface wavelets for large-scale isosurface representation and visualization. In: Proceedings of Visualization ’00, pp. 389–396 (2000)
Bertram, M.: Biorthogonal loop-subdivision wavelets. Computing 72(1–2), 29–39 (2004)
Bertram, M., Duchaineau, M., Hamann, B. et al.: Generalized B-spline subdivision-surface wavelets for geometry compression. IEEE Trans. Visual. Comput. Graph. 10(3), 326–338 (2004)
Bonneau, G.: Multiresolution analysis on irregular surface meshes. IEEE TVCG 4(4), 365–378 (1998)
Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10, 350–355 (1978)
DeRose, T., Kass, M., Truong, T.: Subdivision surfaces for character animation. Comput. Graph. (Proceedings of SIGGRAPH ‘98) 32, 85–94 (1998)
Doo, D., Sabin, M.: Behavior of recursive division surfaces near extraordinary points. Comput. Aided Des. 10, 356–360 (1978)
Dyn, N., Levin, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9(2), 160–169 (1990)
Eck, M., DeRose, T., Duchamp, T. et al.: Multiresolution analysis of arbitrary meshes. In: Proceedings of SIGGRAPH ’95, pp. 173–182 (1995)
Halstead, M., Kass, M., DeRose, T.: Efficient, fair interpolation using Catmull–Clark surfaces. Comput. Graph. (Proceedings of SIGGRAPH ’93) 27, 35–44 (1993)
Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compression. In: Proceedings of SIGGRAPH ’00, New Orleans, Louisiana, pp. 271–278 (2000)
Kobbelt, L.: Interpolatory subdivision on Open quadrilateral nets with arbitrary topology. Comput. Graph. Forum (Proceedings of Eurographics ’96) 15(3), 409–420 (1996)
Kobbelt, L., Vorsatz, J., Labsik, U. et al.: A shrink wrapping approach to remeshing polygonal surfaces. Comput. Graph. Forum (Eurographics ’99 issue) 18, C119–C130 (1999)
Lee, A., Sweldens, W., Schröder, P. et al.: MAPS: multiresolution adaptive parameterization of surfaces. In: Proceedings of SIGGRAPH ’98, pp. 95–104 (1998)
Li, D., Qin, K., Sun, H.: Unlifted Loop subdivision wavelets. In: Proceedings of Pacific Graphics ’04, Seoul, Korea, pp. 25–33 (2004)
Litke, N., Levin, A., Schröder, P.: Fitting subdivision surfaces. In: Proceedings of IEEE Visualization ’01, pp. 319–324 (2001)
Loop, C.T.: Smooth subdivision surfaces based on triangles. Dissertation, Department of Mathematics, University of Utah (1987)
Lounsbery, M., DeRose, T., Warren, J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16(1), 34–73 (1997)
Qin, H., Mandal, C., Vemuri, B.C.: Dynamic Catmull–Clark subdivision surfaces. IEEE TVCG 4(3), 215–229 (1998)
Samavati, F.F., Bartels, R.H.: Multiresolution curve and surface editing: reversing subdivision rules by least-squares data fitting. Comput. Graph. Forum 18(2), 97–119 (1999)
Samavati, F.F., Mahdavi-Amiri, N., Bartels, R.H.: Multiresolution surfaces having arbitrary topologies by a reverse Doo subdivision method. Comput. Graph. Forum 21(2), 121–136 (2002)
Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. Comput. Graph. (Proceedings of SIGGRAPH’ 95), pp. 161–172 (1995)
Sederberg, T., Zheng, J., Sewell, D. et al.: Non-uniform recursive subdivision surfaces. Comput. Graph. (Proceedings of SIGGRAPH ’98), pp. 387–394 (1998)
Sederberg, T., Zheng, J., Bakenov, A. et al.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)
Stam, J.: Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values. Comput. Graph. (Proceedings of SIGGRAPH ’98), pp. 395–404 (1998)
Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)
Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1997)
Valette, S., Prost, R.: Wavelet-based multiresolution analysis of irregular surface meshes. IEEE TVCG 10(2), 113–122 (2004)
Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE TVCG 10(2), 123–129 (2004)
Wu, J., Amaratunga, K.: Wavelet triangulated irregular networks. Int. J. Geograph. Inform. Sci. 17(3), 273–289 (2003)
Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Proceedings of SIGGRAPH ’96, pp. 189–192 (1996)
Zorin, D., Schröder, P.: A unified framework for primal/dual quadrilateral subdivision schemes. Comput. Aided Geom. Des. 18(5), 429–454 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, H., Qin, K. & Tang, K. Efficient wavelet construction with Catmull–Clark subdivision. Visual Comput 22, 874–884 (2006). https://doi.org/10.1007/s00371-006-0074-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-006-0074-7