[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient wavelet construction with Catmull–Clark subdivision

  • Special Issue Paper
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents an efficient biorthogonal wavelet construction with the generalized Catmull–Clark subdivision based on the lifting scheme. The subdivision wavelet construction scheme is applicable to all variants of Catmull–Clark subdivision, so it is more universal than the previous wavelet construction for the generalized bicubic B-spline subdivision. Because the analysis and synthesis algorithms of the wavelets are composed of a series of local and in-place lifting operations, they can be performed in linear time. The experiments have demonstrated the stability of the proposed wavelet analysis based on the ordinary Catmull–Clark subdivision. Moreover, the resulting Catmull–Clark subdivision wavelets have better fitting quality than the generalized bicubic B-spline subdivision wavelets at a similar computation cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bajaj, C., Schaefer, S., Warren, J. et al.: A subdivision scheme for hexahedral meshes. Vis. Comput. 18(5–6), 343–356 (2002)

    Article  Google Scholar 

  2. Ball, A.A., Storry, D.J.T.: A matrix approach to the analysis of recursively generated B-spline surfaces. Comput. Aided Des. 18, 437–442 (1986)

    Article  Google Scholar 

  3. Bertram, M., Duchaineau, M., Hamann, B. et al.: Bicubic subdivision-surface wavelets for large-scale isosurface representation and visualization. In: Proceedings of Visualization ’00, pp. 389–396 (2000)

  4. Bertram, M.: Biorthogonal loop-subdivision wavelets. Computing 72(1–2), 29–39 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertram, M., Duchaineau, M., Hamann, B. et al.: Generalized B-spline subdivision-surface wavelets for geometry compression. IEEE Trans. Visual. Comput. Graph. 10(3), 326–338 (2004)

    Article  Google Scholar 

  6. Bonneau, G.: Multiresolution analysis on irregular surface meshes. IEEE TVCG 4(4), 365–378 (1998)

    MathSciNet  Google Scholar 

  7. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10, 350–355 (1978)

    Article  Google Scholar 

  8. DeRose, T., Kass, M., Truong, T.: Subdivision surfaces for character animation. Comput. Graph. (Proceedings of SIGGRAPH ‘98) 32, 85–94 (1998)

    Google Scholar 

  9. Doo, D., Sabin, M.: Behavior of recursive division surfaces near extraordinary points. Comput. Aided Des. 10, 356–360 (1978)

    Article  Google Scholar 

  10. Dyn, N., Levin, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9(2), 160–169 (1990)

    Article  MATH  Google Scholar 

  11. Eck, M., DeRose, T., Duchamp, T. et al.: Multiresolution analysis of arbitrary meshes. In: Proceedings of SIGGRAPH ’95, pp. 173–182 (1995)

  12. Halstead, M., Kass, M., DeRose, T.: Efficient, fair interpolation using Catmull–Clark surfaces. Comput. Graph. (Proceedings of SIGGRAPH ’93) 27, 35–44 (1993)

    Google Scholar 

  13. Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compression. In: Proceedings of SIGGRAPH ’00, New Orleans, Louisiana, pp. 271–278 (2000)

  14. Kobbelt, L.: Interpolatory subdivision on Open quadrilateral nets with arbitrary topology. Comput. Graph. Forum (Proceedings of Eurographics ’96) 15(3), 409–420 (1996)

    Article  Google Scholar 

  15. Kobbelt, L., Vorsatz, J., Labsik, U. et al.: A shrink wrapping approach to remeshing polygonal surfaces. Comput. Graph. Forum (Eurographics ’99 issue) 18, C119–C130 (1999)

    Article  Google Scholar 

  16. Lee, A., Sweldens, W., Schröder, P. et al.: MAPS: multiresolution adaptive parameterization of surfaces. In: Proceedings of SIGGRAPH ’98, pp. 95–104 (1998)

  17. Li, D., Qin, K., Sun, H.: Unlifted Loop subdivision wavelets. In: Proceedings of Pacific Graphics ’04, Seoul, Korea, pp. 25–33 (2004)

  18. Litke, N., Levin, A., Schröder, P.: Fitting subdivision surfaces. In: Proceedings of IEEE Visualization ’01, pp. 319–324 (2001)

  19. Loop, C.T.: Smooth subdivision surfaces based on triangles. Dissertation, Department of Mathematics, University of Utah (1987)

  20. Lounsbery, M., DeRose, T., Warren, J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16(1), 34–73 (1997)

    Article  Google Scholar 

  21. Qin, H., Mandal, C., Vemuri, B.C.: Dynamic Catmull–Clark subdivision surfaces. IEEE TVCG 4(3), 215–229 (1998)

    Google Scholar 

  22. Samavati, F.F., Bartels, R.H.: Multiresolution curve and surface editing: reversing subdivision rules by least-squares data fitting. Comput. Graph. Forum 18(2), 97–119 (1999)

    Article  Google Scholar 

  23. Samavati, F.F., Mahdavi-Amiri, N., Bartels, R.H.: Multiresolution surfaces having arbitrary topologies by a reverse Doo subdivision method. Comput. Graph. Forum 21(2), 121–136 (2002)

    Article  Google Scholar 

  24. Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. Comput. Graph. (Proceedings of SIGGRAPH’ 95), pp. 161–172 (1995)

  25. Sederberg, T., Zheng, J., Sewell, D. et al.: Non-uniform recursive subdivision surfaces. Comput. Graph. (Proceedings of SIGGRAPH ’98), pp. 387–394 (1998)

  26. Sederberg, T., Zheng, J., Bakenov, A. et al.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)

    Article  Google Scholar 

  27. Stam, J.: Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values. Comput. Graph. (Proceedings of SIGGRAPH ’98), pp. 395–404 (1998)

  28. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1997)

    Article  MathSciNet  Google Scholar 

  30. Valette, S., Prost, R.: Wavelet-based multiresolution analysis of irregular surface meshes. IEEE TVCG 10(2), 113–122 (2004)

    Google Scholar 

  31. Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE TVCG 10(2), 123–129 (2004)

    Google Scholar 

  32. Wu, J., Amaratunga, K.: Wavelet triangulated irregular networks. Int. J. Geograph. Inform. Sci. 17(3), 273–289 (2003)

    Article  Google Scholar 

  33. Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Proceedings of SIGGRAPH ’96, pp. 189–192 (1996)

  34. Zorin, D., Schröder, P.: A unified framework for primal/dual quadrilateral subdivision schemes. Comput. Aided Geom. Des. 18(5), 429–454 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Qin, K. & Tang, K. Efficient wavelet construction with Catmull–Clark subdivision. Visual Comput 22, 874–884 (2006). https://doi.org/10.1007/s00371-006-0074-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0074-7

Keywords

Navigation