Classification of Aquifer Vulnerability by Using the DRASTIC Index and Geo-Electrical Techniques
<p>A location of the study area in Safdarabad Tehsil, Punjab.</p> "> Figure 2
<p>Seven thematic layers of the DRASTIC model: (<b>a</b>) depth to water table; (<b>b</b>) net recharge (<b>c</b>); aquifer media; (<b>d</b>) soil media; (<b>e</b>) slope; (<b>f</b>) vadose zone; and (<b>g</b>) hydraulic conductivity.</p> "> Figure 3
<p>Drastic vulnerability map of the area.</p> "> Figure 4
<p>Geoelectrical Parameters: (<b>a</b>) transverse resistance and (<b>b</b>) longitudinal resistance.</p> "> Figure 5
<p>Pseudo Resistivity Cross section for A to A’ from <a href="#water-13-02144-f004" class="html-fig">Figure 4</a>. The area in cross-section A to A’ shows high resistivity zones even in the shallow depths. After approximately 110 m, the resistivity is increasing, indicating a good groundwater potential zone having better quality water. The reason for high resistivity at these points corresponds to the presence of a recharge source which is a canal in this case. The areas having recharge resources near to them will have not only shallow water tables but also have good quality water [<a href="#B27-water-13-02144" class="html-bibr">27</a>].</p> "> Figure 6
<p>(<b>a</b>) Map for the EC variation in the area; (<b>b</b>) depth of the tube wells from where groundwater sample was taken.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
Background Sources and Preparation of Input Datasets
2.3. Vertical Electrical Sounding
2.4. Electrical Conductivity (EC) and Total Dissolved Solids (TDS)
3. Results
3.1. The DRASTIC Parameters
3.1.1. Depth to Water Table
3.1.2. Net Recharge
3.1.3. Aquifer Media
3.1.4. Soil Media
3.1.5. Topography
3.1.6. Impact of Vadose Zone
3.1.7. Hydraulic Conductivity
3.2. DRASTIC Vulnerabilty Map
3.3. Interpretation of VES results
3.4. Cross-Section Analysis
3.5. EC and TDS Variation in the Area
3.6. Comparision of DRASTIC and EC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- (CGER) Commission on Geosciences. Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential under Conditions of Uncertainty; The National Academies Press: Washington, DC, USA, 1993. [Google Scholar]
- Zaporozec, A. Groundwater Contamination Inventory: A Methodological Guide; IHP-IV Series on Groundwater No.2; UNESCO: Paris, France, 2002. [Google Scholar]
- Shirazi, S.M.; Imran, H.M.; Akib, S. GIS-based DRASTIC method for groundwater vulnerability assessment: A review. J. Risk Res. 2012, 15, 991–1011. [Google Scholar] [CrossRef]
- United Nations Development Programme Pakistan. Water Security in Pakistan: Issues and Challenges; UNDP: New York, NY, USA, 2016; Volume 3, pp. 1–34. [Google Scholar]
- Cosgrove, F.R.; Rijsberman, W.J. World Water Vision: Making Water Everybody’s Business; Routledge: London, UK, 2014. [Google Scholar]
- Davis, J. Private-sector participation in the water and sanitation sector. Annu. Rev. Environ. Resour. 2005, 30, 145–183. [Google Scholar] [CrossRef]
- Margat, J. Vulnerabilite des Mappes d’eau Souterraine a la Pollution; BRGM Publications: Orleans, France, 1968; Volume 68. [Google Scholar]
- SNIFFER (Scotland and Ireland Forum for Environmental Research). Development of a Groundwater Vulnerability Screening Methodology for the Water Framework Directive; Proj. Rep. Code WFD 28; SNIFFER: Edinburgh, UK, 2004. [Google Scholar]
- Neshat, A.; Pradhan, B.; Dadras, M. Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour. Conserv. Recycl. 2014, 86, 74–86. [Google Scholar] [CrossRef]
- Sorichetta, A.; Masetti, M.; Ballabio, C.; Sterlacchini, S.; Beretta, G.P. Reliability of groundwater vulnerability maps obtained through statistical methods. J. Environ. Manag. 2011, 92, 1215–1224. [Google Scholar] [CrossRef]
- Milnes, E. Process-based groundwater salinisation risk assessment methodology: Application to the Akrotiri aquifer (Southern Cyprus). J. Hydrol. 2011, 399, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Barbash, J.E.; Resek, E.A. Pesticides in Ground Water: Distribution, Trends, and Governing Factors; Ann Arbor Press: Chelsea, MI, USA, 1996. [Google Scholar]
- Jeannin, P.-Y.; Zwahlen, F.; Doerfliger, N. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 1999, 39, 165–176. [Google Scholar]
- Foster, S.S.D. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In Vulnerability of Soil and Groundwater to Pollutants; Duijvenbooden, W., Waegeningh, H.G., Eds.; Committee on Hydrological Research: The Hague, The Netherlands, 1987; pp. 69–86. [Google Scholar]
- Van Stempvoort, D.; Ewert, L.; Wassenaar, L. Aquifer vulnerability index: A gis—Compatible method for groundwater vulnerability mapping. Can. Water Resour. J. 1993, 18, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Vrba, J.; Zaporozec, A. Guidebook on mapping groundwater vulnerability. Int. Contrib. Hydrogeol. 1994, 16, 131. [Google Scholar]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized Method for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; NWWA/EPA-600/2-87-035; U.S. Environmental Protection Agency: Washington, DC, USA, 1987. [Google Scholar]
- Maqsoom, A.; Aslam, B.; Khalil, U.; Ghorbanzadeh, O.; Ashraf, H.; Tufail, R.F.F.; Farooq, D.; Blaschke, T. A GIS-based DRASTIC Model and an Adjusted DRASTIC Model (DRASTICA) for Groundwater Susceptibility Assessment along the China–Pakistan Economic Corridor (CPEC) Route. ISPRS Int. J. Geo Inf. 2020, 9, 332. [Google Scholar] [CrossRef]
- Gad, M.; El-Hattab, M. Integration of water pollution indices and DRASTIC model for assessment of groundwater quality in El Fayoum depression, western desert, Egypt. J. Afr. Earth Sci. 2019, 158, 103554. [Google Scholar] [CrossRef]
- Hussain, Y.; Ullah, S.F.; Dilawar, A.; Akhter, G.; Martinez-Carvajal, H.; Roig, H.L. Assessment of the Pollution Potential of an Aquifer from Surface Contaminants in a Geographic Information System: A Case Study of Pakistan. Geo-Chicago 2016, 269, 623–632. [Google Scholar] [CrossRef]
- Gilani, S.R.; Mahmood, Z.; Hussain, M.; Baig, Y.; Abbas, Z. A Study of Drinking Water of Industrial Area of Sheikhupura with Special Concern to Arsenic, Manganese and Chromium. Pak. J. Eng. Appl. Sci. 2013, 13, 118–126. [Google Scholar]
- Aslam, B.; Ismail, S.; Ali, I. A GIS—based DRASTIC model for assessing aquifer susceptibility of Safdarabad Tehsil, Sheikhupura District, Punjab Province, Pakistan. Model. Earth Syst. Environ. 2020, 6, 995–1005. [Google Scholar] [CrossRef]
- Herckenrath, D.; Fiandaca, G.; Auken, E.; Bauer-Gottwein, P. Sequential and joint hydrogeophysical inversion using a field-scale groundwater model with ERT and TDEM data. Hydrol. Earth Syst. Sci. 2013, 17, 4043–4060. [Google Scholar] [CrossRef] [Green Version]
- Asfahani, J.; Zakhem, B.A. Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser valley, northern Syria. Acta Geophys. 2012, 61, 422–444. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Akhter, G.; Khan, M. Geophysical Investigation of Fresh-Saline Water Interface: A Case Study from South Punjab, Pakistan. Ground Water 2017, 55, 841–856. [Google Scholar] [CrossRef] [PubMed]
- Iyasele, J.U.; Idiata, D.J. Investigation of the Relationship between Electrical Conductivity and Total Dissolved Solids for Mono-Valent, Di-Valent and Tri-Valent Metal Compounds. Int. J. Eng. Res. Rev. 2015, 3, 40–48. [Google Scholar]
- Greenman, D.W.; Bennett, G.D.; Swarzenski, W.V. Ground-water hydrology of the punjab, west Pakistan, with emphasis on problems created by canal irrigation. J. Hydrol. 1967, 1, 312. [Google Scholar] [CrossRef]
- Nickson, R.T.; McArthur, J.M.; Shrestha, B.; Kyaw-Myint, T.O.; Lowry, D. Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl. Geochem. 2005, 20, 55–68. [Google Scholar] [CrossRef]
- Moustafa, M. Assessing perched aquifer vulnerability using modified DRASTIC: A case study of colliery waste in north-east England (UK). Hydrogeol. J. 2019, 27, 1837–1850. [Google Scholar] [CrossRef]
- Wu, X.; Li, B.; Ma, C. Assessment of groundwater vulnerability by applying the modified DRASTIC model in Beihai City, China. Environ. Sci. Pollut. Res. 2018, 25, 12713–12727. [Google Scholar] [CrossRef] [PubMed]
- Prasad, N.N. Assessment of groundwater resource in Nileshwar River basin. J. Appl. Hydrol. 2013, 16, 52–60. [Google Scholar]
- Hussien, B.M.; Fayyadh, A.S. Impact of intense exploitation on the groundwater balance and flow within Mullusi aquifer (arid zone, west Iraq). Arab. J. Geosci. 2013, 6, 2461–2482. [Google Scholar] [CrossRef]
- Hopkins, L.D. Methods for Generating Land Suitability Maps: A Comparative Evaluation. J. Am. Inst. Plann. 1977, 43, 386–400. [Google Scholar] [CrossRef]
- Beck, A.E. Physical Principles of Exploration Methods; Palgrave: London, UK, 1981. [Google Scholar] [CrossRef] [Green Version]
- Sikandar, P.; Bakhsh, A.; Arshad, M.; Rana, T. The use of vertical electrical sounding resistivity method for the location of low salinity groundwater for irrigation in Chaj and Rachna Doabs. Environ. Earth Sci. 2010, 60, 1113–1129. [Google Scholar] [CrossRef]
- Bobachev, C. IPI2Win: A Windows Software for an Automatic Interpretation of Resistivity Sounding Data; Moscow State University: Moscow, Russia, 2002; p. 320. [Google Scholar]
- Henriet, J.P. Direct Applications of the Dar Zarrouk Parameters in Ground Water SURVEYS*. Geophys. Prospect. 1976, 24, 344–353. [Google Scholar] [CrossRef]
- Utom, A.U.; Odoh, B.I.; Okoro, A.U. Estimation of Aquifer Transmissivity Using Dar Zarrouk Parameters Derived from Surface Resistivity Measurements: A Case History from Parts of Enugu Town (Nigeria). J. Water Resour. Prot. 2012, 4, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Maillet, R. The Fundamental Equations of Electrical Prospecting. Geophysics 1947, 12, 529–556. [Google Scholar] [CrossRef]
- Jakhrani, S.H.; Soni, H.L.; Shar, N.Z. Analysis of Total Dissolved Solids and Electrical Conductivity in Different Water Supply Schemes of Taluka Chachro, District Tharparkar. QUEST Res. J. 2019, 17, 1–5. [Google Scholar]
- Arnold, S.L.; Doran, J.W.; Schepers, J.; Wienhold, B.; Ginting, D.; Amos, B.; Gomes, S. Portable Probes to Measure Electrical Conductivity and Soil Quality in the Field. Commun. Soil Sci. Plant Anal. 2005, 36, 2271–2287. [Google Scholar] [CrossRef] [Green Version]
- Al Dahaan, S.A.M.; Al-Ansari, N.; Knutsson, S. Influence of Groundwater Hypothetical Salts on Electrical Conductivity Total Dissolved Solids. Engineering 2016, 8, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Tariq, A.; Shu, H. CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Land Cover Change Using Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sens. 2020, 12, 3402. [Google Scholar] [CrossRef]
- Gupta, N. Groundwater Vulnerability Assessment using DRASTIC Method in Jabalpur District of Madhya Pradesh. Int. J. Recent Technol. Eng. 2014, 3, 36–43. [Google Scholar]
- Waqas, H.; Lu, L.; Tariq, A.; Li, Q.; Baqa, M.F.; Xing, J.; Sajjad, A. Flash Flood Susceptibility Assessment and Zonation Using an Integrating Analytic Hierarchy Process and Frequency Ratio Model for the Chitral District, Khyber Pakhtunkhwa, Pakistan. Water 2021, 13, 1650. [Google Scholar] [CrossRef]
- Sener, B.C.; Dergin, G.; Gursoy, B.; Kelesoglu, E.; Slih, I. Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin. Oral Implant. Res. 2009, 20, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl. Geogr. 2008, 28, 32–53. [Google Scholar] [CrossRef]
- Lynch, S.D.; Reynders, A.G.; Schulze, R.E. Preparing input data for a national-scale groundwater vulnerability map of Southern Africa. Water SA 1994, 20, 239–246. [Google Scholar]
- Chandrashekhar, H.; Adiga, S.; Lakshminarayana, V.; Jagdeesha, C.; Nataraju, C. A case study using the model ‘DRASTIC’for assessment of groundwater pollution potential. In Proceedings of the ISRS National Symposium on Remote Sensing Applications for Natural Resources, Bangalore, India, 19–22 January 1999; pp. 19–21. [Google Scholar]
- Foster, S.S.D. Groundwater recharge and pollution vulnerability of British aquifers: A critical overview. Geol. Soc. Spec. Publ. 1998, 130, 7–22. [Google Scholar] [CrossRef]
- IRI. Groundwater Investigation for Sustainable Water Supply to FDA City Housing Scheme, Faisalabad; Research Report No IRR-Phy/577; Government of the Punjab, Irrigation Department, Irrigation Research Institute: Lahore, Pakistan, 2012. [Google Scholar]
- Khalid, P.; Sanaullah, M.; Sardar, M.J.; Iman, S. Estimating active storage of groundwater quality zones in alluvial deposits of Faisalabad area, Rechna Doab, Pakistan. Arab. J. Geosci. 2019, 12, 206. [Google Scholar] [CrossRef]
- Akhter, G.; Hasan, M. Determination of aquifer parameters using geoelectrical sounding and pumping test data in Khanewal District, Pakistan. Open Geosci. 2016, 8, 630–638. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29 Rev. 1; Food and Agricultural Organization: Rome, Italy, 1985. [Google Scholar]
- Kwiatkowski, J.; Pittman, J. Salinity Mapping for Resource Management within the M.D. of Provost, Alberta; Conservation and Development Branch Alberta Agriculture, Food and Rural Development: Edmonton, AB, Canada, 1997. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 3rd ed.; Recommendations Incorporating1ST and 2nd Addenda; World Health Organization: Geneva, Switzerland, 2008; Volume 1. [Google Scholar]
- Yasin, M.A.; Ashfaq, M.; Adil, S.A.; Bakhsh, K. Profit Efficiency of Organic Vs Conventional Wheat Production in Rice-Wheat Zone of Punjab, Pakistan. J. Agric. Res. 2014, 52, 439–452. [Google Scholar]
- Hasan, M.; Shang, Y.; Akhter, G.; Jin, W. Application of VES and ERT for delineation of fresh-saline interface in alluvial aquifers of Lower Bari Doab, Pakistan. J. Appl. Geophys. 2019, 164, 200–213. [Google Scholar] [CrossRef]
- Shakoor, A.; Khan, Z.M.; Farid, H.U.; Sultan, M.; Ahmad, I.; Ahmad, N.; Mahmood, M.H.; Ali, M.U. Delineation of regional groundwater vulnerability using DRASTIC model for agricultural application in Pakistan. Arab. J. Geosci. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Kadkhodaie, F.; Moghaddam, A.A.; Barzegar, R.; Gharekhani, M.; Kadkhodaie, A. Optimizing the DRASTIC vulnerability approach to overcome the subjectivity: A case study from Shabestar plain, Iran. Arab. J. Geosci. 2019, 12, 527. [Google Scholar] [CrossRef]
- FPacheco, A.L.; Martins, L.M.O.; Quininha, M.; Oliveira, A.S.; Fernandes, L.F.S. Modification to the DRASTIC framework to assess groundwater contaminant risk in rural mountainous catchments. J. Hydrol. 2018, 566, 175–191. [Google Scholar] [CrossRef]
S.No | Parameter | Source |
---|---|---|
1 | Depth to water table | Pakistan Council of Research in Water Resources (PCRWR) |
2 | Net recharge | Rainfall Dataset from Pakistan Meteorological Department (PCRWR) |
3 | Aquifer media | Soil Survey of Pakistan and Pakistan Council of Research in Water Resources (PCRWR) |
4 | Soil media | Soil Survey of Pakistan and Pakistan Council of Research in Water Resources (PCRWR) |
5 | Topography | SRTM DEM, Acquired from (https://earthexplorer.usgs.gov/, accessed on 26 December 2020)) |
6 | Impact of vadose zone | Soil Survey of Pakistan and Pakistan Council of Research in Water Resources (PCRWR) |
7 | Hydraulic conductivity | Soil Survey of Pakistan and Pakistan Council of Research in Water Resources (PCRWR) |
Parameter | Range | Rating | Weight |
---|---|---|---|
Depth to water table (m) | <40 | 9 | 5 |
40–60 | 7 | ||
60–80 | 5 | ||
80–100 | 3 | ||
>100 | 1 | ||
Net recharge (mm) | >80 | 9 | 4 |
60–80 | 7 | ||
40–60 | 5 | ||
<40 | 3 | ||
Aquifer media | Sand | 8 | 3 |
Soil media | Sandy loam | 8 | 2 |
Loamy | 7 | ||
Clayey soil | 5 | ||
Salt affected soil | 4 | ||
Topography | <5 | 9 | 1 |
5–10 | 8 | ||
10–20 | 6 | ||
20–40 | 4 | ||
>40 | 2 | ||
Impact of vadose zone | Sand | 7 | 5 |
Hydraulic conductivity | >200 | 9 | 3 |
150–200 | 8 | ||
100–150 | 6 | ||
<100 | 4 |
S.No | Resistivity Zone | Apparent Resistivity (Ωm) | Interpretation Lithology | Ground Water Potential Zone |
---|---|---|---|---|
1 | Zone above water | Haphazard | Surface Materials | Low Potential Zone |
2 | Medium Resistivity Zone | >25 Ωm | Medium to coarse sand or Kankers Intermixed thin Silty Clay layers | High potential Zone |
3 | Low Resistivity Zone | 15–25 Ωm | Fine to medium sand Intermixed with thin Silty layers | Medium Potential Zone |
4 | Very Low Resistivity Zone | <15 Ωm | The admixture of fine sand, clay, and silt | Low Potential Zone |
Potential Irrigation Problem | Unit | Degree of Restriction | ||
---|---|---|---|---|
None | Slight to Moderate | Severe | ||
EC | μS/cm | <1000 | 1000 to 2500 | >3000 |
TDS | mg/L | <700 | 700–2000 | >2000 |
Layer | Min | Max | Mean | STD |
---|---|---|---|---|
EC | 870.21 | 1406 | 1170.13 | 51.43 |
DRASTIC | 60.12 | 180 | 97.72 | 11.44 |
Layer | EC | DRASTIC |
---|---|---|
EC | 1753.54 | |
DRASTIC | 945.51 | 20,471.65 |
Layer | EC | DRASTIC |
---|---|---|
EC | 1 | |
DRASTIC | 0.712 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.H.I.A.; Yan, J.; Ullah, I.; Aslam, B.; Tariq, A.; Zhang, L.; Mumtaz, F. Classification of Aquifer Vulnerability by Using the DRASTIC Index and Geo-Electrical Techniques. Water 2021, 13, 2144. https://doi.org/10.3390/w13162144
Shah SHIA, Yan J, Ullah I, Aslam B, Tariq A, Zhang L, Mumtaz F. Classification of Aquifer Vulnerability by Using the DRASTIC Index and Geo-Electrical Techniques. Water. 2021; 13(16):2144. https://doi.org/10.3390/w13162144
Chicago/Turabian StyleShah, Syed Hassan Iqbal Ahmad, Jianguo Yan, Israr Ullah, Bilal Aslam, Aqil Tariq, Lili Zhang, and Faisal Mumtaz. 2021. "Classification of Aquifer Vulnerability by Using the DRASTIC Index and Geo-Electrical Techniques" Water 13, no. 16: 2144. https://doi.org/10.3390/w13162144
APA StyleShah, S. H. I. A., Yan, J., Ullah, I., Aslam, B., Tariq, A., Zhang, L., & Mumtaz, F. (2021). Classification of Aquifer Vulnerability by Using the DRASTIC Index and Geo-Electrical Techniques. Water, 13(16), 2144. https://doi.org/10.3390/w13162144