Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau
<p>Overview of the study area and the 3 rain gauge stations located within the boundaries of the area.</p> "> Figure 2
<p>Schematic overview of the method applied to derive terrain complexity. Black lines represent the grid of the lowest resolved precipitation product (GPCC), red lines represent the grid of the ALOS digital elevation model (DEM). The topography in the background is an example topography. In the equation to calculate the DEM standard deviation (SD) in each GPCC grid cell, <math display="inline"><semantics> <msub> <mi>x</mi> <mi>i</mi> </msub> </semantics></math> stands for the values within the ALOS DEM cell, <math display="inline"><semantics> <mi>μ</mi> </semantics></math> for the overall mean and <span class="html-italic">N</span> for the number of ALOS DEM grid cells within each GPCC grid cell.</p> "> Figure 3
<p>Spatial mean cumulative sum of precipitation throughout the study period.</p> "> Figure 4
<p>Spatial average monthly sum of precipitation during the study period. The gray dashed line represents the mean precipitation in each month over all datasets.</p> "> Figure 5
<p>Spatial log-scaled per-grid-cell sum over the study period for each of the precipitation products. Sums were only calculated for valid values, which excluded the south-western corner in the PRETIP product (hatched area) and individual grid cells lower than 2500 m.a.s.l.</p> "> Figure 6
<p>Cumulative sum of daily precipitation throughout the study period for the station data (black line) and the gridded precipitation products (colored lines).</p> "> Figure 7
<p>Absolute precipitation difference (mm day<sup>−1</sup>) based on terrain complexity aligned with the coarsest grid (GPCC). Complexity is described as high (SD > Q3) or low (SD ≤ Q3) standard deviation of ALOS-DEM elevation within a single grid cell of the common grid. Blue rectangles represent low terrain complexity, red dots indicate high terrain complexity and the yellow diamonds depict the mean difference.</p> "> Figure 8
<p>Visualization of the selected climdex indices R1, R10, R20, Rx1, Rx5 and PTOT as boxplots (for descriptions, see <a href="#water-12-03271-t003" class="html-table">Table 3</a>). Each box contains all grid cell values within the precipitation product. Boxes range from the 1st to 3rd quartile; the yellow line denotes the median; and whiskers indicate 1.5 fold interquartile ranges from the upper to lower boundaries. Values outside this range are displayed as black dots. Please note that the different products have different spatial resolutions.</p> "> Figure 9
<p>Visualization of precipitation differences between each two precipitation products based on the relationship between mean difference (yellow diamonds in <a href="#water-12-03271-f007" class="html-fig">Figure 7</a>) and the difference between high (red dots in <a href="#water-12-03271-f007" class="html-fig">Figure 7</a>) and low (blue squares in <a href="#water-12-03271-f007" class="html-fig">Figure 7</a>) complexity precipitation. The groups describe: (I) low mean difference and low difference between high and low terrain complexity, (II) high mean difference but low difference with respect to terrain complexity and (III) medium overall difference but large variation depending on terrain complexity. Only some labels of all pairs as listed in <a href="#water-12-03271-f007" class="html-fig">Figure 7</a> are displayed.</p> "> Figure A1
<p>Amount of available PRETIP scenes per day. The maximum value is 48 (2 scenes per hour) and marked with the black dotted line. On average, 32.6 scenes per day are available.</p> "> Figure A2
<p>Visualization of the selected climdex indices R1, R10, R20, Rx1, Rx5 and PTOT as boxplot charts equivalent to <a href="#water-12-03271-f008" class="html-fig">Figure 8</a> (for description see <a href="#water-12-03271-t003" class="html-table">Table 3</a>). (<b>a</b>) depicts resulting values after resampling every product to the grid resolution of the lowest resolved product. (<b>b</b>) shows the same boxplot charts as <a href="#water-12-03271-f008" class="html-fig">Figure 8</a>, but with the y-axis limits adjusted to the range in (a) to allow for direct comparison between both versions.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Period
2.2. Data
2.3. Methods
2.3.1. Correlation Coefficient
2.3.2. Comparison to Station Data
2.3.3. Climdex
2.3.4. Terrain Complexity
3. Results
3.1. Statistical Analysis
3.2. Comparison with Rain Gauge Data
3.3. Terrain Complexity
3.4. Climdex Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
List of Acronyms | |
ALOS | Advanced Land Observing Satellite |
DEM | Digital elevation model |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ERA5 | ERA5 |
ERA5-Land | ERA5-Land |
ERA-Interim | ERA-Interim |
GPCC | Global Precipitation Climatology Centre |
HAR v2 | High Asia Refined analysis version 2 |
HAR v2 2 km | High Asia Refined analysis version 2–2 km domain |
HAR v2 10 km | High Asia Refined analysis version 2–10 km domain |
HMA | High Mountain Asia |
JRA-55 | Japanese 55-year Reanalysis |
MERRA-2 | Modern-Era Retrospective analysis for Research and Applications, Version 2 |
PRETIP | Precipitation REtrieval covering the TIbetan Plateau |
TiP | Tibetan Plateau |
Appendix A
Dataset | ERA5 | ERA-Interim | ERA5-Land | HAR v2 2 km | HAR v2 10 km | JRA55 | MERRA2 | PRETIP |
---|---|---|---|---|---|---|---|---|
ERA-Interim | 0.84 | |||||||
ERA5-Land | 1.00 | 0.84 | ||||||
HAR v2 2 km | 0.88 | 0.83 | 0.85 | |||||
HAR v2 10 km | 0.86 | 0.84 | 0.86 | 0.89 | ||||
JRA55 | 0.72 | 0.80 | 0.74 | 0.75 | 0.73 | |||
MERRA2 | 0.76 | 0.73 | 0.78 | 0.74 | 0.75 | 0.67 | ||
PRETIP | 0.72 | 0.74 | 0.72 | 0.71 | 0.71 | 0.72 | 0.64 | |
GPCC | 0.80 | 0.73 | 0.81 | 0.75 | 0.75 | 0.69 | 0.76 | 0.58 |
Dataset | ERA5 | ERA-Interim | ERA5-Land | HAR v2 2 km | HAR v2 10 km | JRA55 | MERRA2 | PRETIP |
---|---|---|---|---|---|---|---|---|
ERA-Interim | 0.83 | |||||||
ERA5-Land | 1.00 | 0.83 | ||||||
HAR v2 2 km | 0.89 | 0.86 | 0.88 | |||||
HAR v2 10 km | 0.87 | 0.87 | 0.87 | 0.92 | ||||
JRA55 | 0.71 | 0.86 | 0.73 | 0.78 | 0.76 | |||
MERRA2 | 0.68 | 0.71 | 0.69 | 0.68 | 0.69 | 0.64 | ||
PRETIP | 0.71 | 0.75 | 0.74 | 0.76 | 0.72 | 0.66 | 0.51 | |
GPCC | 0.74 | 0.73 | 0.74 | 0.74 | 0.76 | 0.67 | 0.68 | 0.41 |
References
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, M.; Wang, B.; Sun, M.; Li, X. Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat. Int. 2013, 313–314, 110–117. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, L.; Chen, D.; Xu, J.; Zhang, H. Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau. Int. J. Climatol. 2018, 38, 1285–1297. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Rounce, D.R.; Hock, R.; Shean, D.E. Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 2020, 7, 331. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Zeng, X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Allerup, P.; Madsen, H. Accuracy of Point Precipitation Measurements. Hydrol. Res. 1980, 11, 57–70. [Google Scholar] [CrossRef]
- Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res. Atmos. 2008. [Google Scholar] [CrossRef]
- New, M.; Todd, M.; Hulme, M.; Jones, P. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. 2001. [Google Scholar] [CrossRef]
- Sevruk, B. Adjustment of tipping-bucket precipitation gauge measurements. Atmos. Res. 1996, 42, 237–246. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Wanders, N.; Lutz, A.F.; Shea, J.M.; Bierkens, M.F.P. Reconciling high altitude precipitation in the upper Indus Basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 4755–4784. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, R.; Baker, B.; Kochendorfer, J.; Meyers, T.; Landolt, S.; Fischer, A.P.; Black, J.; Thériault, J.M.; Kucera, P.; Gochis, D.; et al. How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed. Bull. Am. Meteorol. Soc. 2012, 93, 811–829. [Google Scholar] [CrossRef] [Green Version]
- Rollenbeck, R.; Bendix, J. Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos. Res. 2011, 99, 277–289. [Google Scholar] [CrossRef]
- Sevruk, B. Point precipitation measurements: Why are they not corrected? In Water for the Future: Hydrology in Perspective; IAHS Press: Wallingford, UK, 1987. [Google Scholar]
- Rudolf, B.; Schneider, U. Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. In Proceedings of the Second Workshop of the International Precipitation Working Group 2014, Monterey, CA, USA, 17 February 2014; pp. 231–247. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Huang, D.; Gao, S. Impact of different reanalysis data on WRF dynamical downscaling over China. Atmos. Res. 2018, 200, 25–35. [Google Scholar]
- Li, D.; Yang, K.; Tang, W.; Li, X.; Zhou, X.; Guo, D. Characterizing precipitation in high altitudes of the western Tibetan plateau with a focus on major glacier areas. Int. J. Climatol. 2020, joc.6509. [Google Scholar] [CrossRef]
- Yoon, Y.; Kumar, S.V.; Forman, B.A.; Zaitchik, B.F.; Kwon, Y.; Qian, Y.; Rupper, S.; Maggioni, V.; Houser, P.; Kirschbaum, D.; et al. Evaluating the Uncertainty of Terrestrial Water Budget Components Over High Mountain Asia. Front. Earth Sci. 2019, 7, 120. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Wen, Y.; Shi, C.; Yang, Y.; Zhang, F.; Wu, J.; Gu, J.; Pan, Y.; Sun, S.; Meng, J. Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data? Remote Sens. 2020, 12, 683. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Mishra, S.K.; Salunke, P.; Sahany, S. Importance of the resolution of surface topography vis-à-vis atmospheric and surface processes in the simulation of the climate of Himalaya-Tibet highland. Clim. Dyn. 2019, 52, 4735–4748. [Google Scholar] [CrossRef]
- Chvíla, B.; Ondras, M.; Sevruk, B. The wind-induced loss of precipitation measurement of small time intervals as recorded in the field. In Proceedings of the WMO/CIMO Technical Conference, Bratislava, Slovakia, 23–25 September 2002. [Google Scholar]
- Service, C.C.C. C3S ERA5-Land Reanalysis. 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 20 November 2020).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tolksdorf, V.; Otto, M.; Scherer, D. WRF-based Dynamical Downscaling of ERA5 Reanalysis Data for High Mountain Asia: Towards a New Version of the High Asia Refined Analysis. Int. J. Climatol. 2020. [Google Scholar] [CrossRef]
- Kolbe, C.; Thies, B.; Egli, S.; Lehnert, L.; Schulz, H.; Bendix, J. Precipitation Retrieval over the Tibetan Plateau from the Geostationary Orbit—Part 1: Precipitation Area Delineation with Elektro-L2 and Insat-3D. Remote Sens. 2019, 11, 2302. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, C.; Thies, B.; Turini, N.; Liu, Z.; Bendix, J. Precipitation retrieval over the Tibetan Plateau from the geostationary Orbit—Part 2: Precipitation rates with Elektro-L2 and Insat-3D. Remote Sens. 2020, 12, 2114. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, D.M.W.; Forsythe, N.; Fowler, H.J.; O’Donnell, G.M.; Li, X.F. Evaluation of Upper Indus Near-Surface Climate Representation by WRF in the High Asia Refined Analysis. J. Hydrometeorol. 2019, 20, 467–487. [Google Scholar] [CrossRef]
- Kropáček, J.; Neckel, N.; Tyrna, B.; Holzer, N.; Hovden, A.; Gourmelen, N.; Schneider, C.; Buchroithner, M.; Hochschild, V. Repeated glacial lake outburst flood threatening the oldest Buddhist monastery in north-western Nepal. Nat. Hazards Earth Syst. Sci. 2015, 15, 2425–2437. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, qj.3803. [Google Scholar] [CrossRef]
- Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M.; Stender, P. Global gridded precipitation over land: A description of the new GPCC First Guess Daily product. Earth Syst. Sci. Data 2014, 6, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Zhiquan, L.; Berner, J.; Wang, W.; Powers, J.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4 NCAR Technical Note; Technical Report; NCAR-UCAR: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- National Satellite Meteorological Centre. Insat-3D Data Products Catalog; Technical Report; 2014. Available online: http://satellite.imd.gov.in/dynamic/INSAT3D_Catalog.pdf (accessed on 20 November 2020).
- Zak, A. Zenit delivers Elektro-L2. 2016. Available online: http://www.russianspaceweb.com/elektro-l2.html (accessed on 20 November 2020).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation. NASA/GSFC Code 2018, 612, 47. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Huffman, G.J.; Adler, R.F.; Braun, S.; Garrett, K.; Jones, E.; McNally, A.; Skofronick-Jackson, G.; Stocker, E.; Wu, H.; et al. NASA’s Remotely Sensed Precipitation: A Reservoir for Applications Users. Bull. Am. Meteorol. Soc. 2017, 98, 1169–1184. [Google Scholar] [CrossRef]
- Uppala, S.M.; Kållberg, P.; Simmons, A.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.; Haseler, J.; Hernandez, A.; Kelly, G.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data: Indices for monitoring changes in extremes. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Lu, H.; Liu, X.; Bian, L. Terrain complexity: Definition, index, and DEM resolution. In Geoinformatics 2007: Geospatial Information Science; Chen, J., Pu, Y., Eds.; International Society for Optics and Photonics, SPIE: Nanjing, China, 2007; Volume 6753, pp. 753–763. [Google Scholar] [CrossRef]
- Miehe, G.; Winiger, M.; Böhner, J.; Yili, Z. The Climatic Diagram Map of High Asia: Purpose and Concepts (Klimadiagramm-Karte von Hochasien. Konzept und Anwendung). Erdkunde 2001, 55, 94–97. [Google Scholar]
- Pham, Q.B.; Yang, T.C.; Kuo, C.M.; Tseng, H.W.; Yu, P.S. Combing random forest and least square support vector regression for improving extreme rainfall downscaling. Water 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Nashwan, M.S.; Shahid, S. Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmos. Res. 2019, 230, 104632. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J. Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model. Clim. Dyn. 2016, 47, 2923–2934. [Google Scholar] [CrossRef] [Green Version]
- Ou, T.; Chen, D.; Chen, X.; Lin, C.; Yang, K.; Lai, H.W.; Zhang, F. Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization. Clim. Dyn. 2020, 54, 1–15. [Google Scholar]
Dataset | Temporal Resolution | Spatial Resolution (Approx.) | Temporal Coverage | Spatial Coverage |
---|---|---|---|---|
ERA5 [36] | 1 h | 30 km | 1979—near real time | global |
ERA5-Land [25] | 1 h | 9 km | 1981—near real time | global |
ERA-Interim [26] | 6 h | 80 km | 1979–August 2019 | global |
HAR v2 10 km [29] | 1 h | 10 km | 2004–2018 | HMA only |
HAR v2 2 km [29] | 1 h | 2 km | April–October 2017 | study area |
JRA-55 [27] | 1 h | 55 km | 1958—near real time | global |
MERRA-2 [28] | 1 h | 55 × 69 km | 1980—near real time | global |
PRETIP [30,31] | 30 min | 4 km | May 2017–September 2017 | TiP |
GPCC [37] | d | 111 km | January 2009–present | global |
Dataset | West | Southeast | South |
---|---|---|---|
Rain gauge | 4134 * | 4320 * | 4476 * |
ERA5 | 4824 | 4995 | 4944 |
ERA5-Land | 4415 | 4359 | 4507 |
ERA-Interim | 3573 | 4856 | 4919 |
HAR v2 10 km | 4448 | 4682 | 4615 |
HAR v2 2 km | 4151 | 4505 | 4465 |
JRA-55 | 3810 | 4887 | 4887 |
MERRA-2 | 4007 | 3512 | 2989 |
PRETIP | 4243 * | 4234 * | 4467 * |
GPCC | 4903 * | 4907 * | 4907 * |
Index | Definition | Unit |
---|---|---|
R1 | number of wet days (P > 1 mm) | days |
R10 | number of wet days with P > 10 mm | days |
R20 | number of wet days with P > 20 mm | days |
Rx1 | maximum 1-day precipitation | mm |
Rx5 | maximum 5-day precipitation | mm |
PTOT | total precipitation | mm |
Dataset | ERA5 | ERA-Interim | ERA5-Land | HAR v2 2 km | HAR v2 10 km | JRA55 | MERRA2 | PRETIP |
---|---|---|---|---|---|---|---|---|
ERA-Interim | 0.72 | |||||||
ERA5-Land | 1.00 | 0.72 | ||||||
HAR v2 2 km | 0.74 | 0.67 | 0.67 | |||||
HAR v2 10 km | 0.74 | 0.68 | 0.74 | 0.77 | ||||
JRA55 | 0.61 | 0.66 | 0.64 | 0.61 | 0.60 | |||
MERRA2 | 0.50 | 0.48 | 0.53 | 0.48 | 0.48 | 0.44 | ||
PRETIP | 0.47 | 0.51 | 0.44 | 0.34 | 0.40 | 0.45 | 0.33 | |
GPCC | 0.55 | 0.49 | 0.55 | 0.54 | 0.51 | 0.48 | 0.55 | 0.35 |
Dataset | ERA5 | ERA-Interim | ERA5-Land | HAR v2 2 km | HAR v2 10 km | JRA55 | MERRA2 | PRETIP |
---|---|---|---|---|---|---|---|---|
ERA-Interim | 0.82 | |||||||
ERA5-Land | 1.00 | 0.82 | ||||||
HAR v2 2 km | 0.85 | 0.79 | 0.82 | |||||
HAR v2 10 km | 0.84 | 0.80 | 0.84 | 0.87 | ||||
JRA55 | 0.69 | 0.76 | 0.71 | 0.72 | 0.70 | |||
MERRA2 | 0.72 | 0.69 | 0.74 | 0.70 | 0.71 | 0.63 | ||
PRETIP | 0.64 | 0.66 | 0.63 | 0.59 | 0.61 | 0.63 | 0.59 | |
GPCC | 0.77 | 0.68 | 0.78 | 0.73 | 0.73 | 0.67 | 0.74 | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamm, A.; Arndt, A.; Kolbe, C.; Wang, X.; Thies, B.; Boyko, O.; Reggiani, P.; Scherer, D.; Bendix, J.; Schneider, C. Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau. Water 2020, 12, 3271. https://doi.org/10.3390/w12113271
Hamm A, Arndt A, Kolbe C, Wang X, Thies B, Boyko O, Reggiani P, Scherer D, Bendix J, Schneider C. Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau. Water. 2020; 12(11):3271. https://doi.org/10.3390/w12113271
Chicago/Turabian StyleHamm, Alexandra, Anselm Arndt, Christine Kolbe, Xun Wang, Boris Thies, Oleksiy Boyko, Paolo Reggiani, Dieter Scherer, Jörg Bendix, and Christoph Schneider. 2020. "Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau" Water 12, no. 11: 3271. https://doi.org/10.3390/w12113271
APA StyleHamm, A., Arndt, A., Kolbe, C., Wang, X., Thies, B., Boyko, O., Reggiani, P., Scherer, D., Bendix, J., & Schneider, C. (2020). Intercomparison of Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau. Water, 12(11), 3271. https://doi.org/10.3390/w12113271