Precipitation Retrieval over the Tibetan Plateau from the Geostationary Orbit—Part 1: Precipitation Area Delineation with Elektro-L2 and Insat-3D
"> Figure 1
<p>Data availability of the least common data of Insat-3D, Elektro-L2 and GPM IMERG (with all met conditions) for the half year of 2017 on a temporal (<b>a</b>) and spatial (<b>b</b>) scale relative to the number of available scenes.</p> "> Figure 2
<p>Schematic view of the processing scheme of the precipitation area delineation.</p> "> Figure 3
<p>Workflow of the selection of the best model. See <a href="#sec2dot4-remotesensing-11-02302" class="html-sec">Section 2.4</a> for a detailed description.</p> "> Figure 4
<p>Average feature importance and standard deviations relative to the most important feature of the feature space. Feature importance was calculated for a subset of all available scenes from the training data set using all non-static predictors. The error bars were calculated based on one standard deviation of each predictor.</p> "> Figure 5
<p>Receiver Operating Characteristics (ROC) diagram comparing the probability of detection (POD) with the false alarm ration (FAR) based on the mean prediction samples of all test weeks in 2017. The colors / shape indicate the different temporal resolutions/different balanced data sets.</p> "> Figure 6
<p>Performance of the precipitation area delineation for eight days (5–12 July 2017) as boxplots. The validation scores are calculated for each validation scene of these eight days. The boxes display the 25th, 50th and 75th percentiles. Whiskers indicate extreme data up to 1.5 times of the interquartile range. Outliers are marked as crosses. The width of the boxes is relative to the available number of validation scenes.</p> "> Figure 7
<p>Performance of the new precipitation area delineation for July 2017 as boxplots for low, medium and high precipitation amounts according to percentiles. The boxes display the 25th, 50th and 75th percentiles. Whiskers indicate extreme data up to 1.5 times of the interquartile range. Outliers are marked as crosses. The width of the boxes is relative to the available number of validation scenes.</p> "> Figure 8
<p>Comparison of the performance of the new precipitation area delineation (left) with IMERG’s IR only, both with reference to IMERG’s gauge calibrated MW precipitation on July 7th 2017 on 4:00 p.m. UTC. These estimates are available for the grey MW swath marked area. Snow covered areas do not fulfill the quality index from IMERG.</p> "> Figure 9
<p>Performance of the precipitation area delineation using IR only precipitation for July 2017 as boxplots for low, medium and high precipitation rates according to percentiles. The boxes display the 25th, 50th and 75th percentiles. Whiskers indicate extreme data up to 1.5 times of the interquartile range. Outliers are marked as crosses. The width of the boxes is relative to the available number of validation scenes.</p> "> Figure 10
<p>Distribution of mean validation measures over the Tibetan Plateau (TiP) for 2017 (<b>a</b>–<b>d</b>) with the precipitation totals (<b>e</b>) and frequency of gauge calibrated MW precipitation for 2017 (<b>f</b>).</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Geostationary Satellite Products from Insat-3D and Elektro-L2
2.1.2. Satellite Precipitation Product GPM (Global Precipitation Measurement Mission): IMERG (Integrated Multi-satellitE Retrievals for GPM)
2.1.3. Additional Data
2.2. Processing Scheme of the Precipitation Area Delineation
2.3. RF Model Training and Validation
2.3.1. General Concept of Random Forests
2.3.2. Random Forest Classification
2.3.3. Validation of the Random Forest Models
2.4. Random Forest Model Optimization
Selection of the Best Model
2.5. Comparison to IMERG’s IR Only Precipitation Estimate
3. Results
3.1. Results of the Selection of the Best Model
3.2. Results of the Comparison between the New Precipitation Area Delineation and IMERG’s IR Only Precipitation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMSR | Advanced Microwave Scanning Radiometer |
ATMS | Advanced Technology Microwave Sounder |
CMORPH | Climate Prediction Centre MORPHing technique |
CORRA | GPM Combined Radar-Radiometer |
CV | Cross Variogram |
DEM | Digital Elevation Model |
DPR | Dual-frequency Precipitation Radar |
FAR | False Alarm Ratio |
FN | False Negatives |
FP | False Positives |
GEO | Geostationary |
GMI | GPM Microwave Imager |
GOES | Geostationary Operational Environmental Satellite |
GPM | Global Precipitation Measurement Mission |
HSS | Heidke Skill Score |
IMERG | Integrated Multi-satellitE Retrievals for GPM |
IMSRA | Indian National Satellite System (INSAT) Multispectral Rainfall Algorithm |
IMD | Indian Meteorological Department |
IR | Infrared |
IR only | Infrared only precipitation product |
LEO | Low Earth Orbiting |
MAD | Madogram |
MHS | Microwave Humidity Sounder |
MOSDAC | Meteorological and Oceanographic Satellite Data Archival Centre |
MW | Microwave |
PERSIANN | Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks |
OOB score | Out Of Bag score |
PAD | Precipitation area delineation |
PC | Percentage Correct |
PCV | Pseudo Cross Variogram |
POD | Probability of Detection |
POFD | Probability of False Detection |
PMW | Passive Microwave |
PR | Precipitation Radar |
PrecipCal | Multi-satellite precipitation estimate with gauge calibration |
RF | Random Forest |
ROD | Rodogram |
SP | Static Predictors |
SSMIS | Special Sensor Microwave Imager/Sounder |
TMI | TRMM Microwave Imager |
TMPA | TRMM Multisatellite Precipitation Analysis |
TRMM | Tropical Rainfall Measuring Mission |
TiP | Tibetan Plateau |
TN | True Negatives |
TPI | Topographic Position Index |
TRI | Terrain Ruggedness Index |
TP | True Positives |
VAR | Variogram |
VIS | Visible |
References
- Immerzeel, W.W.; van Beek, L.P.; Bierkens, M.F. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Alazzy, A.A.; Lü, H.; Chen, R.; Ali, A.B.; Zhu, Y.; Su, J. Evaluation of Satellite Precipitation Products and Their Potential Influence on Hydrological Modeling over the Ganzi River Basin of the Tibetan Plateau. Adv. Meteorol. 2017, 2017, 3695285. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, X.; Wang, X. Comparison of spatial interpolation methods based on rain gauges for annual precipitation on the Tibetan plateau. Pol. J. Environ. Stud. 2016, 25, 1339–1345. [Google Scholar] [CrossRef]
- He, H.Y.; Guo, Z.H.; Xiao, W.F.; Guo, Q.S. Mapping monthly precipitation for Tibetan Plateau with GIS and multivariate analysis based on DEM data. Acta Ecol. Sin. 2005, 25, 2933–2938. [Google Scholar]
- Gerlitz, L.; Conrad, O.; Böhner, J. Large-scale atmospheric forcing and topographic modification of precipitation rates over High Asia—A neural-network-based approach. Earth Syst. Dyn. 2015, 6, 61–81. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Curio, J.; Maussion, F.; Scherer, D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst. Dyn. 2015, 6, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Curio, J.; Scherer, D. Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau. Earth Syst. Dyn. 2016, 7, 767–782. [Google Scholar] [CrossRef] [Green Version]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef]
- Bai, A.J.; Liu, C.H.; Liu, X.D. Diurnal Variation of Summer Rainfall over the Tibetan Plateau and Its Neighboring Regions Revealed by TRMM Multi-Satellite Precipitation Analysis. Chin. J. Geophys. 2008, 51, 518–529. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liu, G. Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J. Appl. Meteorol. Climatol. 2007, 46, 667–672. [Google Scholar] [CrossRef]
- Lehnert, L.W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Sci. Rep. 2016, 6, 24367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bookhagen, B.; Burbank, D.W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar]
- Yin, Z.Y.; Zhang, X.; Liu, X.; Colella, M.; Chen, X. An Assessment of the Biases of Satellite Rainfall Estimates over the Tibetan Plateau and Correction Methods Based on Topographic Analysis. J. Hydrometeorol. 2008, 9, 301–326. [Google Scholar] [CrossRef]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning—A random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ. 2014, 141, 129–143. [Google Scholar] [CrossRef]
- Kühnlein, M.; Appelhans, T.; Thies, B.; Nauß, T. Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests. J. Appl. Meteorol. Climatol. 2014, 53, 2457–2480. [Google Scholar] [CrossRef]
- Thies, B.; Nauss, T.; Bendix, J. Discriminating raining from non-raining cloud areas at mid-latitudes using meteosat second generation SEVIRI night-time data. Meteorol. Appl. 2008, 15, 219–230. [Google Scholar] [CrossRef]
- Thies, B.; Nauss, T.; Bendix, J. Discriminating raining from non-raining clouds at mid-latitudes using meteosat second generation daytime data. Atmos. Chem. Phys. 2008, 8, 2341–2349. [Google Scholar] [CrossRef] [Green Version]
- Thies, B.; Nauss, T.; Bendix, J. Precipitation process and rainfall intensity differentiation using Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager data. J. Geophys. Res. Atmos. 2008, 113, 1–19. [Google Scholar] [CrossRef]
- Meyer, H.; Drönner, J.; Nauss, T. Satellite-based high-resolution mapping of rainfall over southern Africa. Atmos. Meas. Tech. 2017, 10, 2009–2019. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating Summertime Precipitation from Himawari-8 and Global Forecast System Based on Machine Learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2557–2570. [Google Scholar] [CrossRef]
- Thus, D.; Shin, D.B. Classification of precipitating clouds using satellite infrared observations and its implications for rainfall estimation. Q. J. R. Meteorol. Soc. 2018, 144, 133–144. [Google Scholar] [Green Version]
- Upadhyaya, S.; Ramsankaran, R. Modified-INSAT Multi-Spectral Rainfall Algorithm (M-IMSRA) at climate region scale: Development and validation. Remote Sens. Environ. 2016, 187, 186–201. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Behrangi, A.; Hsu, K.l.; Imam, B.; Sorooshian, S.; Huffman, G.J.; Kuligowski, R.J. PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysis. J. Hydrometeorol. 2009, 10, 1414–1429. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.; Knapp, K.; Cecil, D.; Nelson, B.; Prat, O. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Kidd, C.; Levizzani, V. Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 1109–1116. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Petersen, W.A.; Tokay, A. A Novel Approach to Identify Sources of Errors in IMERG for GPM Ground Validation. J. Hydrometeorol. 2016, 17, 2477–2491. [Google Scholar] [CrossRef]
- Wu, L.; Zhai, P. Validation of daily precipitation from two high-resolution satellite precipitation datasets over the Tibetan Plateau and the regions to its east. Acta Meteorol. Sin. 2012, 26, 735–745. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, M. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2013, 17, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelki, E.J.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation; 2017; pp. 1–48. Available online: https://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf (accessed on 1 October 2019).
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Ning, S.; Wang, J.; Jin, J.; Ishidaira, H. Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland. Water 2016, 8, 481. [Google Scholar] [CrossRef]
- Grecu, M.; Olson, W.S.; Munchak, S.J.; Ringerud, S.; Liao, L.; Haddad, Z.; Kelley, B.L.; Mclaughlin, S.F. The GPM combined algorithm. J. Atmos. Ocean. Technol. 2016, 33, 2225–2245. [Google Scholar] [CrossRef]
- Kidd, C.; Matsui, T.; Chern, J.; Mohr, K.; Kummerow, C.; Randel, D. Global precipitation estimates from cross-track passive microwave observations using a physically based retrieval scheme. J. Hydrometeorol. 2016, 17, 383–400. [Google Scholar] [CrossRef]
- Tan, M.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Ma, Y.; Tang, G.; Long, D.; Yong, B.; Zhong, L.; Wan, W.; Hong, Y. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sens. 2016, 8, 569. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 2010, 115, 1–25. [Google Scholar] [CrossRef]
- National Satellite Meteorological Centre. Insat-3D Data Products Catalog; Technical Report; 2014. Available online: http://satellite.imd.gov.in/dynamic/INSAT3D_Catalog.pdf (accessed on 1 October 2019).
- MOSDAC, Space Applications Centre, Indian Space Research Organisation, Govt. of INDIA. Meteorological & Oceanographic Satellite Data Archival Centre. Available online: https://www.mosdac.gov.in/ (accessed on 1 October 2019).
- News, S.P. INSAT-3D Now Operational. 2014. Available online: https://www.wmo-sat.info/vlab/2014/02/insat-3d-now-operational/ (accessed on 1 October 2019).
- Zak, A. Zenit Delivers Elektro-L2. 2016. Available online: http://www.russianspaceweb.com/elektro-l2.html (accessed on 30 September 2019).
- Skofronick-Jackson, G.; Huffman, G.; Stocker, E.; Petersen, W. Successes with the Global Precipitation Measurement (GPM) Mission, Technical Report 4. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Huffman, G. GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree x 0.1 Degree V05 (3IMERGHH), Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2017. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_V05/summary (accessed on 1 October 2019).
- Huffman, G.J. Precipitation Measurement Mission. GPM Data Downloads. Available online: https://pmm.nasa.gov/data-access/downloads/gpm (accessed on 30 September 2019).
- ORNL DAAC. Digital Elevation Model: Global 30 Arc-Second Elevation Data Set (GTOPO30); 2017. Available online: https://webmap.ornl.gov/ogc/dataset.jsp?dg_id=10003_1 (accessed on 1 October 2019).
- Jenness, J. Topographic Position Index (TPI) v. 1.2. Technical Report. 2006. Available online: http://www.jennessent.com/downloads/TPI_Documentation_online.pdf (accessed on 30 September 2019).
- Riley, S.J.; DeGloria, S.D.; Elliot, R. A Terrain Ruggedness Index that Quantifies Topographic Heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Wilson, M.F.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 2007, 30, 3–35. [Google Scholar] [CrossRef]
- Egli, S.; Thies, B.; Drönner, J.; Cermak, J.; Bendix, J. A 10 year fog and low stratus climatology for Europe based on Meteosat Second Generation data. Q. J. R. Meteorol. Soc. 2017, 143, 530–541. [Google Scholar] [CrossRef]
- Huffman, G. IMERG Quality Index. Available online: https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERG_QI.pdf (accessed on 30 September 2019).
- Breiman, L. Random Forests. Mach. Learn. 2011, 45, 5–32. [Google Scholar] [CrossRef]
- Meyer, H.; Lehnert, L.W.; Wang, Y.; Reudenbach, C.; Nauss, T.; Bendix, J. From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau: Do we need hyperspectral information? Int. J. Appl. Earth Obs. Geoinf. 2017, 55, 21–31. [Google Scholar] [CrossRef]
- Breiman, L. Out-of-Bag Estimation; Statistics Department. University of California: Berkeley, CA, USA, 1996; pp. 1–13. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=Out-of-Bag+Estimation%3B+Statistics+Department.+University+of+California.+Berkeley.&btnG= (accessed on 1 October 2019).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Ghaemi, M.; Feizi-Derakhshi, M.R. Feature selection using Forest Optimization Algorithm. Pattern Recognit. 2016, 60, 121–129. [Google Scholar] [CrossRef]
- Cermak, J. SOFOS—A New Satellite-Based Operational Fog Observation Scheme. Ph.D. Thesis, Philipps-Universität Marburg, Marburg, Germany, 2006. [Google Scholar]
- World Weather Research Program/Working Group On Numerical Experimentation Joint Working Group On Verification. Forecast Verification—Issues, Methods and FAQ. Available online: https://www.cawcr.gov.au/projects/verification/ (accessed on 30 September 2019).
- Beusch, L.; Foresti, L.; Gabella, M.; Hamann, U. Satellite-based rainfall retrieval: From generalized linear models to artificial neural networks. Remote Sens. 2018, 10, 939. [Google Scholar] [CrossRef]
- Yamamoto, M.K.; Ueno, K.; Nakamura, K. Comparison of Satellite Precipitation Products with Rain Gauge Data for the Khumb Region, Nepal Himalayas. J. Meteorol. Soc. Jpn. 2011, 89, 597–610. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Tan, J.; Kirstetter, P.E.; Petersen, W. Validation of the Version 05 Level 2 precipitation products from the GPM Core Observatory and constellation satellite sensors. Q. J. R. Meteorol. Soc. 2018, 144, 313–328. [Google Scholar] [CrossRef]
- Tan, J.; Petersen, W.A.; Kirchengast, G.; Goodrich, D.C.; Wolff, D.B. Evaluation of Global Precipitation Measurement Rainfall Estimates against Three Dense Gauge Networks Three Dense Gauge Networks. J. Hydrometeorol. 2018, 19. [Google Scholar] [CrossRef]
- Yao, Z.; Li, W.; Zhao, B.; Chen, Y. Remote Sensing of Precipitation on the Tibetan Plateau Using the TRMM Microwave Imager. J. Appl. Meteorol. 2001, 40, 1381–1392. [Google Scholar] [CrossRef]
- Li, R.; Wang, K.; Qi, D. Validating the Integrated Multisatellite Retrievals for Global Precipitation Measurement in Terms of Diurnal Variability With Hourly Gauge Observations Collected at 50,000 Stations in China. J. Geophys. Res. Atmos. 2018, 123, 10423–10442. [Google Scholar] [CrossRef]
Band Type | Satellite | Central Wavelength [m] | Spatial Resolution [km] | Temporal Resolution [min] |
---|---|---|---|---|
MIR | Insat-3D | 3.9 | 4 | 30 |
WV | Insat-3D | 6.8 | 8 | 30 |
MIR | Elektro-L2 | 8 | 4 | 30 |
TIR | Elektro-L2 | 9.7 | 4 | 30 |
TIR | Insat-3D | 10.8 | 4 | 30 |
TIR | Insat-3D | 11.9 | 4 | 30 |
Categories | Insat-3D | Elektro-L2 | GPM IMERG |
---|---|---|---|
Reference | [41,42,43] | [44] | [32,45,46] |
Launch date | July 2013 | December 2015 | February 2014 |
Data availability | January 2014 | 5 March 2017–4 October 2017 | March 2014 |
Location | 82.1E/0N | 77.8E/0 N | 60N–60S |
Data level | 1.5 | 1.5 | 3 |
Operated by | MOSDAC | Russ. Met. Service Roshhydromet & Russ. Federal space agency Roskosmos | NASA |
Sensor | multispectral radiometer imager | optical multispectral scanning imager-radiometer (MSU-GS) | dual-frequency precipitation radar (DPR) & 13-channel passive microwave (PMW) imager (GMI) |
Products | imager bands (0.65 m, 1.65 m, 3.9 m, 10.8 m, 11.9 m, 6.8 m) latitude, longitude, satellite azimuth, & elevation, sun azimuth & elevation, Cloudmask (clear, cloudy, probably clear, probably cloudy, cold space) | imager bands (0.57 m, 0.72 m, 0.85 m, 3.75 m, 6.35 m, 8 m, 8.7 m, 9.7 m, 10.7 m, 11.85 m), latitude, longitude | Observation time, Precipitation source, PrecipCal, IR only, Quality Index |
Bands [m] | Band Differences | Geostatistical Texture Features | Ancillary Data |
---|---|---|---|
3.9 | T 3.9–11.9 | Variogram (VAR, all bands) | Static |
6.8 | T 6.8–3.9 | Madogram (MAD, all bands) | Digital Elevation Model (DEM) |
8 | T 6.8–8 | Rodogram (ROD, all bands) | Topographic Position Index (TPI) |
9.7 | T 6.8–11.9 | Cross Variogram (CV, all band comb.) | Terrain Ruggedness Index (TRI) |
10.8 | T 8–3.9 | Pseudo Cross Variogram (PCV, all band comb.) | Slope |
11.9 | T 9.7–3.9 | Aspect | |
T 9.7–6.8 | Tangential curvature | ||
T 9.7–8 | Profile curvature | ||
T 10.8–6.8 | Satellite Elevation Angle | ||
T 10.8–11.9 | Satellite Azimuth Angle | ||
T 10.8–3.9 | Partly static | ||
T 10.8–8 | Solar Zenith Angle | ||
T 10.8–9.7 | Sun Azimuth Angle |
Observation | |||
---|---|---|---|
Precipitation | No Precipitation | ||
Model estimation | Precipitation | True Positives (TP) | False Positives (FP) |
No precipitation | False Negatives (FN) | True Negatives (TN) |
Validation Measure | Equation | Range | Optimal Value |
---|---|---|---|
Probability of Detection | POD = | [0, 1] | 1 |
Probability of False Detection | POFD = | [0, 1] | 0 |
False Alarm Ratio | FAR = | [0, 1] | 0 |
Heidke Skill Score | HSS = | [, 1] | 1 |
Percentage Correct | PC = | [0, 1] | 1 |
Validation | May | June | July | August | September | |||||
---|---|---|---|---|---|---|---|---|---|---|
No SP | With SP | No SP | With SP | No SP | With SP | No SP | With SP | No SP | With SP | |
POD | 0.47 | 0.41 | 0.57 | 0.55 | 0.59 | 0.59 | 0.61 | 0.55 | 0.57 | 0.48 |
POFD | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 |
FAR | 0.29 | 0.30 | 0.26 | 0.24 | 0.26 | 0.25 | 0.26 | 0.24 | 0.23 | 0.25 |
HSS | 0.49 | 0.44 | 0.59 | 0.58 | 0.59 | 0.60 | 0.60 | 0.57 | 0.60 | 0.53 |
PC | 0.92 | 0.92 | 0.93 | 0.92 | 0.92 | 0.93 | 0.93 | 0.93 | 0.94 | 0.92 |
Validation | May | June | July | August | September | |||||
---|---|---|---|---|---|---|---|---|---|---|
PAD | IR only | PAD | IR only | PAD | IR only | PAD | IR only | PAD | IR only | |
POD | 0.40 | 0.07 | 0.58 | 0.29 | 0.59 | 0.28 | 0.55 | 0.28 | 0.50 | 0.26 |
POFD | 0.03 | 0.07 | 0.03 | 0.06 | 0.04 | 0.06 | 0.03 | 0.06 | 0.02 | 0.05 |
FAR | 0.35 | 0.99 | 0.24 | 0.55 | 0.27 | 0.43 | 0.26 | 0.51 | 0.25 | 0.52 |
HSS | 0.43 | 0.002 | 0.59 | 0.22 | 0.60 | 0.25 | 0.56 | 0.23 | 0.54 | 0.23 |
PC | 0.92 | 0.92 | 0.93 | 0.81 | 0.93 | 0.74 | 0.93 | 0.83 | 0.93 | 0.84 |
Validation Measures | PAD | Thies et al., 2008a | Thies et al., 2008b | Kühnlein et al., 2014 | Meyer et al., 2017a | Thus, & Shin 2018 | Min et al., 2019 |
---|---|---|---|---|---|---|---|
POD | 0.52 | 0.6 | 0.1–0.7 | 0.5 | 0.6 | 0.98 | 0.58 |
POFD | 0.03 | 0.2 | 0–0.6 | 0.15 | 0.18 | ||
FAR | 0.27 | 0.5 | 0.3–0.9 | 0.5 | 0.8 | 0.01 | 0.27–0.41 |
HSS | 0.54 | >0.2 | 0.2–0.5 | 0.18 | 0.2–0.8 | 0.53 | |
PC | 0.92 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolbe, C.; Thies, B.; Egli, S.; Lehnert, L.; Schulz, H.M.; Bendix, J. Precipitation Retrieval over the Tibetan Plateau from the Geostationary Orbit—Part 1: Precipitation Area Delineation with Elektro-L2 and Insat-3D. Remote Sens. 2019, 11, 2302. https://doi.org/10.3390/rs11192302
Kolbe C, Thies B, Egli S, Lehnert L, Schulz HM, Bendix J. Precipitation Retrieval over the Tibetan Plateau from the Geostationary Orbit—Part 1: Precipitation Area Delineation with Elektro-L2 and Insat-3D. Remote Sensing. 2019; 11(19):2302. https://doi.org/10.3390/rs11192302
Chicago/Turabian StyleKolbe, Christine, Boris Thies, Sebastian Egli, Lukas Lehnert, Hans Martin Schulz, and Jörg Bendix. 2019. "Precipitation Retrieval over the Tibetan Plateau from the Geostationary Orbit—Part 1: Precipitation Area Delineation with Elektro-L2 and Insat-3D" Remote Sensing 11, no. 19: 2302. https://doi.org/10.3390/rs11192302
APA StyleKolbe, C., Thies, B., Egli, S., Lehnert, L., Schulz, H. M., & Bendix, J. (2019). Precipitation Retrieval over the Tibetan Plateau from the Geostationary Orbit—Part 1: Precipitation Area Delineation with Elektro-L2 and Insat-3D. Remote Sensing, 11(19), 2302. https://doi.org/10.3390/rs11192302