Assessment Framework for Natural Groundwater Contamination in Arid Regions: Development of Indices and Wells Ranking System Using Fuzzy VIKOR Method
<p>Study area showing the three well fields constructed in different times. The boundary of the city shown in figure is tentative and was not defined by the municipality of Buraydah.</p> "> Figure 2
<p>Flow diagram of south water treatment plant in study area (modified from [<a href="#B7-water-12-00423" class="html-bibr">7</a>]).</p> "> Figure 3
<p>Methodological framework for groundwater quality assessment using various water quality indices for drinking, unrestricted irrigation (URI), and restricted irrigation (RI). Note: Turbidity (TURB), Total Dissolved Solids (TDS), Electrical Conductivity (EC), and Total Hardness (TH).</p> "> Figure 4
<p>α-cut of a triangular fuzzy number <math display="inline"><semantics> <mover accent="true"> <mi>T</mi> <mo stretchy="false">˜</mo> </mover> </semantics></math> (Source: Wang et al. [<a href="#B40-water-12-00423" class="html-bibr">40</a>]).</p> "> Figure 5
<p>Spatial water quality variations in three well fields of the study area: (<b>a</b>) physical water quality index (WQIp), (<b>b</b>) chemical water quality index (WQIc), (<b>c</b>) radioactive water quality index (WQIr), (<b>d</b>) overall water quality index (WQIo) (see geographical location of study area in <a href="#water-12-00423-f001" class="html-fig">Figure 1</a>). Darker color tones correspond to higher concentrations of WQPs and thus a lower water quality.</p> "> Figure 6
<p>Scenario analysis results.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. The Assessment Framework
2.3. Water Quality Monitoring and Standards
2.3.1. Physical Parameters
2.3.2. Chemical Parameters
2.3.3. Radioactive Parameters
2.4. Development of Water Quality Index
2.4.1. Fuzzy Analytic Hierarchy Process
2.4.2. Fuzzy VIKOR Method for Aggregation and Wells’ Ranking
3. Results and Discussion
3.1. Groundwater Quality Monitoring Results
3.2. Groundwater Quality Index using Fuzzy-VIKOR
3.3. Discussion
4. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haider, H.; Al-Salamah, I.S.; Ghumman, A.R. Development of Groundwater Quality Index using Fuzzy-based Multicriteria Analysis for Buraydah, Qassim, Saudi Arabia. Arab. J. Sci. Eng. 2017, 49, 4033–4051. [Google Scholar] [CrossRef]
- Bamousa, A.O.; El Maghraby, M. Groundwater characterization and quality assessment, and sources of pollution in Madinah, Saudi Arabia. Arab J. Geosci. 2016, 9, 536. [Google Scholar] [CrossRef]
- Al-Ahmadi, M.E.; El-Fiky, A.A. Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, western Saudi Arabia. J. King Saud Univ. Sci. 2009, 21, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Bob, M.; Abd Rahman, N.; Taher, S.; Elamin, A. Multi-objective Assessment of Groundwater Quality in Madinah City, Saudi Arabia. Water Qual. Expo. Health 2015, 7, 53–66. [Google Scholar] [CrossRef]
- Alhababy, A.M.; Al-Rajab, A.J. Groundwater Quality Assessment in Jazan Region, Saudi Arabia. Curr. World Environ. 2015, 10, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Nazzal, Y.; Ahmed, I.; Al-Arifi, N.S.N.; Ghrefat, H.; Batayneh, A.; Abumarah, B.A.; Zaidi, F.K. A combined hydrochemical-statistical analysis of Saq aquifer, northwest part of Kingdom of Saudi Arabia. Geosci. J. 2015, 19, 145–155. [Google Scholar] [CrossRef]
- Haider, H. Performance assessment framework for groundwater treatment plants in Arid Environments: A case of Buraydah, Saudi Arabia. Environ. Monit. Assess. 2017, 189, 544. [Google Scholar] [CrossRef]
- Sharaf, M.A.; Hussein, M.T. Groundwater quality in the Saq aquifer, Saudi Arabia. Hydrol. Sci. J. 1996, 4, 683–696. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, H.H.A.; Khairia, M.A.; Amani, S.A.; Lamia, A.A.; Khuloud, A.A. Estimation of Water Quality Index and Assessment of Some Heavy Metals in potable water at Kingdom Saudi Arabia. J. Appl. Sci. Res. 2012, 8, 3206–3210. [Google Scholar]
- Aly, A.A.; Al-Omran, A.M.; Alharby, M.M. The water quality index and hydrochemical characterization of groundwater resources in Hafar Albatin, Saudi Arabia. Arab. J. Geosci. 2015, 8, 4177–4190. [Google Scholar] [CrossRef]
- Al-Omran, A.; Al-Barakah, F.; Altuquq, A.; Aly, A.; Nadeem, M. Drinking water quality assessment and water quality index of Riyadh, Saudi Arabia. Water Qual. Res. J. Can. 2015, 50, 287–296. [Google Scholar] [CrossRef]
- Center for Sustainable Systems, University of Michigan. U.S. Water Supply and Distribution Factsheet; Pub. No. CSS05-17; University of Michigan: Ann Arbor, MI, USA, 2018. [Google Scholar]
- Minh, H.V.T.; Avtar, R.; Kumar, P.; Tran, D.Q.; Ty, T.V.; Behera, H.C.; Kurasaki, M. Groundwater Quality Assessment Using Fuzzy-AHP in an Giang Province of Vietnam. Geosciences 2019, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Gholami, V.; Khaleghi, M.R.; Sebghati, M. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS). Appl. Water Sci. 2017, 7, 3633–3647. [Google Scholar] [CrossRef] [Green Version]
- Vadiati, M.; Asghari-Moghaddam, A.; Nakhaei, M.; Adamowski, J.; Akbarzadeh, A.H. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. J. Environ. Manag. 2016, 184, 255–270. [Google Scholar] [CrossRef]
- Srinivas, R.; Bhakar, P.; Singh, A.P. Groundwater quality assessment in some selected area of Rajasthan, India using fuzzy multi-criteria decision making tool. Aquat. Procedia 2015, 4, 1023–1030. [Google Scholar] [CrossRef]
- Hosseini-Moghari, S.M.; Ebrahimi, K.; Azarnivand, A. Groundwater quality assessment with respect to fuzzy water quality index (FWQI): An application of expert systems in environmental monitoring. Environ. Earth Sci. 2015, 74, 7229–7238. [Google Scholar] [CrossRef]
- Kiurski-Milosević, J.Ž.; Vojinović-Miloradov, M.B.; Ralević, N.M. Fuzzy model for determination and assessment of groundwater quality in the city of Zrenjanin, Serbia. Hemijska Industrija 2015, 69, 17. [Google Scholar] [CrossRef] [Green Version]
- Saberi Nasr, A.; Rezaei, M.; Dashti Barmaki, M. Groundwater contamination analysis using Fuzzy Water Quality index (FWQI): Yazd province, Iran. Geopersia 2013, 3, 47–55. [Google Scholar]
- Kumar, N.V.; Mathew, S.; Swaminathan, G. Multifactorial fuzzy approach for the assessment of groundwater quality. J. Water Resour. Prot. 2010, 2, 597. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, S.; Singh, B.; Gaur, S.; Garg, V.K.; Kushwaha, H.S. Analysis of groundwater quality using fuzzy synthetic evaluation. J. Hazard. Mater. 2007, 147, 938–946. [Google Scholar] [CrossRef]
- Ahmed, I.; Nazzal, Y.; Zaidi, F.K.; Al-Arifi, N.S.N.; Ghrefat, H.; Naeem, M. Hydrogeological vulnerability and pollution risk mapping of groundwater in the Saq and overlying aquifers using the DRASTIC model and GIS techniques. Environ. Earth Sci. 2015, 74, 1303–1318. [Google Scholar] [CrossRef]
- Kabir, G.; Sumi, R.S. Power substation location selection using fuzzy analytic hierarchy process and PROMETHEE: A case study from Bangladesh. Energy 2014, 72, 717–730. [Google Scholar] [CrossRef]
- Serafim Opricovic, S. Fuzzy VIKOR with an application to water resources planning. Expert Syst. Appl. 2011, 38, 12983–12990. [Google Scholar] [CrossRef]
- The Water Treatments. Available online: https://www.thewatertreatments.com/water-treatment-news/water-quality-standards-saso-saudi/ (accessed on 10 July 2019).
- Al-Jasser, A.O. Saudi wastewater reuse standards for agricultural irrigation: Riyadh treatment plants effluent compliance. J. King Saud Univ. Eng. Sci. 2011, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). Available online: http://www.fao.org/3/T0234E/T0234E01.htm#note1 (accessed on 1 December 2019).
- Hussain, G.; Alquwaizany, A.; Al-Zarah, A. Guidelines for irrigation water quality and water management in the Kingdom of Saudi Arabia: An overview. J. Appl. Sci. 2010, 10, 79–96. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2011; p. 228. [Google Scholar]
- Abdel-Satar, A.M.; Al-Khabbas, M.H.; Alahmad, W.R.; Yousef, W.M.; Alsomadi, R.H.; Iqbal, T. Quality assessment of groundwater and agricultural soil in Hail region, Saudi Arabia. Egypt. J. Aquat. Res. 2017, 43, 55–64. [Google Scholar] [CrossRef]
- Haider, H.; Alkhowaiter, M.H.; Shafiquzzaman, M.; AlSaleem, S.S.; Almoshaogeh, M.; Alharbi, F. Spatiotemporal Water Quality Variations in Smaller Water Supply Systems: Using Modified CCME WQI from Groundwater Source to Distribution Networks. Water 2019, 11, 1884. [Google Scholar] [CrossRef] [Green Version]
- McGhee, T.J. Water Supply and Sewerage, 6th ed.; McGraw-Hill Publishing Company: New York, NY, USA, 2007. [Google Scholar]
- Havener, M. Radium Removal Technologies for Potable Groundwater Systems, Water World Website. 2016. Available online: http://www.waterworld.com (accessed on 6 November 2016).
- Althoyaib, S.S.; El-Taher, A. Natural radioactivity measurements in groundwater from Al-Jawa, Saudi Arabia. J. Radioanal. Nucl. Chem. 2015, 304, 547–552. [Google Scholar] [CrossRef]
- Shabana, E.I.; Abulfaraj, W.H.; Kinsara, A.A.; Abu Rizaiza, O.S. Natural radioactivity in the groundwater of Wadi Nu’man, Mecca Province, Saudi Arabia. Radiochim. Acta 2013, 101, 461–469. [Google Scholar] [CrossRef]
- El-Taher, A. Radon and its decay products in underground water from Qassim and its radiation hazards. J. Environ. Sci. Technol. 2012, 5, 475–481. [Google Scholar] [CrossRef] [Green Version]
- UNSCEAR. Report: Sources, Effects and Risks of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation: New York, NY, USA, 2000; Available online: http://www.unscear.org/unscear/en/publications/2000_1.html (accessed on 15 September 2019).
- USEPA. Radionuclides Rule: A Quick Reference Guide; EPA 816-F-01-003, Office of Water (4606); Unites States Environmental Protection Agency: Washington, DC, USA, 2001.
- Lauria, D.C.; Ribeiro, F.C.A.; Conti, C.C.; Loureiro, F.A. Radium and uranium levels in vegetables grown using different farming management systems. J. Environ. Radioact. 2009, 100, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chou, M.; Pang, C. Applying Fuzzy Analytic Hierarchy Process for Evaluating Service Quality of Online Auction. Int. J. Comput. Inf. Eng. 2012, 6, 586–593. [Google Scholar]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems. Fac. Civ. Eng. Belgrade 1998, 2, 5–21. [Google Scholar]
- Opricovic, S. A fuzzy compromise solution for multicriteria problems. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2007, 15, 363–380. [Google Scholar] [CrossRef]
- MMRA. Technical Guidelines for the Use of Treated Sanitary Wastewater in Irrigation for Landscaping and Agricultural Irrigation, 1st ed.; Ministry of Municipal and Rural Affairs, Deputy Ministry for Technical Affairs, General Department for Infrastructure: Riyadh, Saudi Arabia, 2003. [Google Scholar]
- MWE. Technical Guidelines for the Use of Treated Sanitary Wastewater in Irrigation for Landscaping and Agricultural Irrigation; Ministry of Water and Electricity: Riyadh, Saudi Arabia, 2006. [Google Scholar]
- Montaña, M.; Camacho, A.; Serrano, I.; Devesa, R.; Matia, L.; Vallés, I. Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal. J. Environ. Radioact. 2013, 125, 86–92. [Google Scholar] [CrossRef]
- Kent, R.; Landon, M.K. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use. Sci. Total Environ. 2013, 452, 125–136. [Google Scholar] [CrossRef]
No. | Study Reference | Weighting Method | Aggregation Method | Location | No. of WQPs | No. of Samples/Wells | Physical WQPs | Chemical WQPs | Radioactive WQPs | Well Ranking | Sub-Indices | Combined Index |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | Minh et al. [13] | Fuzzy-AHP | Simple Weighted sum | Vietnam | 6 | 8 | - | ✓ | - | O | O | ✓ |
2. | Gholami et al. [14] | Gradient descent method | Neuro-fuzzy hybrid | Iran | 8 | 85 | ✓ | ✓ | - | O | O | ✓ |
3. | Haider et al. [1] | Fuzzy AHP | Fuzzy TOPSIS 1 | Saudi Arabia | 3 | 24 | ✓ | ✓ | ✓ | ✓ | O | ✓ |
4. | Vadiati et al. [15] | None | Fuzzy inference system | Iran | 7 | 49 | ✓ | ✓ | - | O | O | ✓ |
5. | Srinivas et al. [16] | None | Fuzzy inference system | India | 10 | 15 | ✓ | ✓ | - | O | O | ✓ |
6. | Moghari et al. [17] | None | Fuzzy inference system | Iran | 9 | 17 | ✓ | ✓ | - | O | O | ✓ |
7. | Milošević et al. [18] | None | Fuzzy inference system | Serbia | 8 | 40 | - | ✓ | - | O | O | ✓ |
8. | Nasr et al. [19] | None | Fuzzy inference system | Iran | 12 | 71 | ✓ | ✓ | - | O | ✓ | ✓ |
9. | Kumar et al. [20] | None | Fuzzy inference system | India | 12 | 79 | ✓ | ✓ | - | O | O | ✓ |
10. | Dahiya et al. [21] | None | Fuzzy synthetic evaluation | India | 16 | 42 | ✓ | ✓ | - | O | O | ✓ |
Linguistic Term | Fuzzy Number | TFN (l, m, u) | Linguistic Term | Fuzzy Number | TFN (l, m, u) |
---|---|---|---|---|---|
Extreme unimportance | 1/9, 1/9, 1/9 | Intermediate value between and | 1, 2, 3 | ||
Intermediate values between and | 1/9, 1/8, 1/7 | Moderate importance | 2, 3, 4 | ||
Very unimportance | 1/8, 1/7, 1/6 | Intermediate value between and | 3, 4, 5 | ||
Intermediate value between and | 1/7, 1/6, 1/5 | Essential importance | 4, 5, 6 | ||
Essential unimportance | 1/6, 1/5, ¼ | Intermediate value between and | 5, 6, 7 | ||
Intermediate value between and | 1/5, 1/4, 1/3 | Very vital importance | 6, 7, 8 | ||
Moderate unimportance | 1/4, 1/3, ½ | Intermediate value between and | 7, 8, 9 | ||
Intermediate value between and | 1/3, 1/2, 1 | Extreme importance | 9, 9, 9 | ||
Equally importance | 1, 1, 1 | - | - | - |
n | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 8 | 9 | 10 |
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Water Quality Parameter (WQP) | Units | Water Quality Standards 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Drinking | URI 2 | RI 3 | ||||||||
Physical Water Quality Parameters | ||||||||||
Total dissolved solids (TDS) | mg/L | 600 | 2000 | 2500 | 400 | 500 | 600 | 2000 | 2250 | 2500 |
Electrical conductivity (EC) | μS/cm at 20 °C | 160–1600 | - | - | 600 | 800 | 1000 | 3000 | 3500 | 4000 |
Turbidity (TURB) | NTU | 1 | 5 | 5 | 0 | 1 | 5 | 20 | 50 | 80 |
Chemical Water Quality Parameters | ||||||||||
pH | - | 6.5–8.5 | 6–8.4 | 6.5 | 7 | 8.5 | 8 | 8.5 | 9 | |
Iron (Fe) | mg/L | 0.3 | 5 | 5 | 0.05 | 0.15 | 0.3 | 5 | 6.5 | 8 |
Total Hardness (TH) | mg/L as CaCO3 | 500 | - | - | 200 | 300 | 500 | 800 | 900 | 1000 |
Chloride (Cl) | mg/L | 250 | 100 | - | 200 | 225 | 250 | 800 | 1000 | 1200 |
Nitrate–N (NO3) | mg/L | 10 | 10 | 10 | 1.5 | 3 | 5 | 20 | 35 | 50 |
Sulphates (SO4) | mg/L | 400 | 600 | - | 50 | 200 | 350 | 200 | 400 | 600 |
Radioactive Water Quality Parameters | ||||||||||
Radium (226+228Ra) | pci/L | 30 | - | - | 5 | 15 | 30 | 100 | 120 | 140 |
Linguistic Performance Level | Water Quality Index (WQI) | Suitability of WQIp for | Remarks | ||
---|---|---|---|---|---|
Drinking | URI 1 | RI 2 | |||
Low (L) | 0.0 to <0.6 | ✘ | ✘ | ✓ 3 |
|
Medium (M) | 0.6 to <0.96 | ✘ | ✓ | ✓ |
|
High (H) | ≥0.96 to 1.0 | ✓ | ✓ | ✓ |
|
Water Quality Parameters (WQPs) | Units | MIN 1 | MEAN | MAX 2 | SD 3 | CV 4 |
---|---|---|---|---|---|---|
Well Field 1 | ||||||
Total dissolved solids (TDS) | mg/L | 808 | 981 | 1222 | 347 | 35.4 |
Electrical conductivity (EC) | μS/cm at 20 °C | 1172 | 1471 | 1772 | 502 | 35.4 |
Turbidity (TURB) | NTU | 7.2 | 18.8 | 27.2 | 7.5 | 40 |
pH | - | 6.8 | 7.4 | 7.9 | 2.5 | 33.4 |
Iron (Fe) | mg/L | 0.7 | 1.0 | 1.3 | 0.4 | 36.1 |
Total Hardness (TH) | mg/L as CaCO3 | 230 | 339 | 600 | 143 | 42 |
Chloride (Cl) | mg/L | 246 | 309 | 568 | 128 | 41 |
Nitrate – N (NO3) | mg/L | 1.5 | 12 | 34.5 | 10 | 83.3 |
Sulphates (SO4) | mg/L | 79 | 162 | 324 | 78 | 48 |
Radium (226+228Ra) | pci/L | 49.5 | 70.6 | 95 | 11 | 15.6 |
Well Field 2 | ||||||
Total dissolved solids (TDS) | mg/L | 1080 | 1423 | 2028 | 261 | 18.3 |
Electrical conductivity (EC) | μS/cm at 20 °C | 1566 | 2062 | 2940 | 378 | 18.3 |
Turbidity (TURB) | NTU | 5.6 | 26.2 | 78.8 | 15.6 | 59.3 |
pH | - | 6.9 | 7.3 | 10.5 | 0.9 | 11.7 |
Iron (Fe) | mg/L | 0.2 | 2.0 | 7.6 | 2.0 | 98.5 |
Total Hardness (TH) | mg/L as CaCO3 | 284 | 476 | 974 | 213 | 45 |
Chloride (Cl) | mg/L | 312 | 525 | 1100 | 240 | 46 |
Nitrate – N (NO3) | mg/L | 0.7 | 28.9 | 196.7 | 48.9 | 169 |
Sulphates (SO4) | mg/L | 71 | 126 | 233 | 41 | 33 |
Radium (226+228Ra) | pci/L | 21 | 78.6 | 121.1 | 27.1 | 34.5 |
Well Field 3 | ||||||
Total dissolved solids (TDS) | mg/L | 476 | 573 | 932 | 153 | 27 |
Electrical conductivity (EC) | μS/cm at 20 °C | 846 | 1116 | 1857 | 34 | 31 |
Turbidity (TURB) | NTU | 11.2 | 32.7 | 133 | 41 | 125.6 |
pH | - | 7.0 | 7.3 | 7.3 | 0.2 | 3.2 |
Iron (Fe) | mg/L | 0.2 | 1.7 | 5.6 | 1.6 | 92.5 |
Total Hardness (TH) | mg/L as CaCO3 | 265 | 294 | 350 | 30 | 10.1 |
Chloride (Cl) | mg/L | 110 | 137 | 178 | 25 | 18 |
Nitrate – N (NO3) | mg/L | 4.3 | 10.4 | 15.5 | 4.4 | 42.3 |
Sulphates (SO4) | mg/L | 113 | 153 | 196 | 24 | 15.8 |
Radium (226+228Ra) | pci/L | 47.7 | 81.9 | 98.8 | 18.7 | 22.9 |
Water Quality Parameters | Combined Fuzzy Weights | ||
---|---|---|---|
Physical water quality parameters | - | - | - |
Total dissolved solids (TDS) | 0.391 | 0.527 | 0.552 |
Electrical conductivity (EC) | 0.157 | 0.162 | 0.156 |
Turbidity (TURB) | 0.261 | 0.311 | 0.318 |
Chemical water quality parameters | - | - | - |
pH | 0.116 | 0.141 | 0.150 |
Iron (Fe) | 0.331 | 0.374 | 0.376 |
Total Hardness (TH) | 0.223 | 0.265 | 0.272 |
Chloride (Cl) | 0.104 | 0.125 | 0.132 |
Nitrate – N (NO3) | 0.048 | 0.057 | 0.062 |
Sulphates (SO4) | 0.036 | 0.037 | 0.041 |
Radioactive water quality parameters | - | - | - |
Radium (226+228Ra) | 1.00 | 1.00 | 1.00 |
Overall water quality index (WQIo) | - | - | - |
Physical water quality index (WQIp) | 0.400 | 0.451 | 0.455 |
Chemical water quality index (WQIc) | 0.265 | 0.295 | 0.300 |
Radioactive water quality index (WQIr) | 0.255 | 0.254 | 0.285 |
WQPs | Wells Located in Well Field No. 3 | Check Wells | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W3-1 | W3-2 | W3-3 | W3-4 | W3-5 | W3-6 | W3-7 | W3-8 | Best Case Scenario | Worst Case Scenario | |||||||||||||||||||||
l | m | r | l | m | r | l | m | r | l | m | r | l | m | r | l | m | r | l | m | r | l | m | r | l | m | u | l | m | u | |
f1: pH | 6.96 | 7.06 | 7.16 | 7.1 | 7.2 | 7.3 | 7.02 | 7.12 | 7.22 | 6.91 | 7.01 | 7.11 | 7.07 | 7.17 | 7.27 | 7.36 | 7.46 | 7.56 | 7.56 | 7.66 | 7.76 | 7.4 | 7.5 | 7.6 | 6.5 | 7 | 8.5 | 8 | 8.5 | 9.3 |
f2: Fe | 1.23 | 1.25 | 1.28 | 0.98 | 1.00 | 1.03 | 1.34 | 1.36 | 1.39 | 1.55 | 1.57 | 1.60 | 5.56 | 5.58 | 5.61 | 1.77 | 1.79 | 1.82 | 0.18 | 0.20 | 0.23 | 1.22 | 1.24 | 1.27 | 0.15 | 0.15 | 0.3 | 7.5 | 8 | 8.5 |
f3: TH | 310 | 320 | 330 | 290 | 300 | 310 | 266 | 276 | 286 | 260 | 270 | 280 | 255 | 265 | 275 | 340 | 350 | 360 | 289 | 299 | 309 | 260 | 270 | 280 | 200 | 300 | 500 | 900 | 950 | 1000 |
f4: Cl | 136 | 146 | 156 | 146 | 156 | 166 | 100 | 110 | 120 | 102 | 112 | 122 | 102 | 112 | 122 | 141 | 151 | 161 | 122 | 132 | 142 | 168 | 178 | 188 | 200 | 225 | 250 | 1000 | 1100 | 1200 |
f5: NO3 | 3.3 | 4.3 | 5.3 | 13.7 | 14.7 | 15.7 | 8.4 | 9.4 | 10.4 | 5.3 | 6.3 | 7.3 | 14.5 | 15.5 | 16.5 | 13.8 | 14.8 | 15.8 | 5.5 | 6.5 | 7.5 | 11 | 12 | 13 | 1.5 | 3 | 5 | 50 | 70 | 90 |
f6: SO4 | 141 | 146 | 151 | 136 | 141 | 146 | 141 | 146 | 151 | 150 | 155 | 160 | 150 | 155 | 160 | 168 | 173 | 178 | 191 | 196 | 201 | 108 | 113 | 118 | 50 | 100 | 150 | 250 | 350 | 500 |
WQPs | Wells Located in Well Field No. 3 | Check Wells | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W3-1 | W3-2 | W3-3 | W3-4 | W3-5 | W3-6 | W3-7 | W3-8 | Best Case Scenario | Worst Case Scenario | |||||||||||||||||||||
l | m | r | l | m | r | l | m | r | l | m | r | l | m | r | l | m | r | l | m | r | l | m | r | l | m | u | l | m | u | |
−0.10 | 0.07 | 0.17 | −0.10 | 0.07 | 0.17 | −0.10 | 0.06 | 0.17 | −0.10 | 0.07 | 0.17 | 0.14 | 0.34 | 0.44 | −0.03 | 0.15 | 0.25 | −0.13 | 0.03 | 0.14 | −0.09 | 0.09 | 0.19 | −0.22 | −0.01 | 0.26 | 0.53 | 0.97 | 1.31 | |
Sj Crisp | 0.05 | 0.049 | 0.048 | 0.05 | 0.31 | 0.13 | 0.02 | 0.07 | 0.0 | 0.9 | ||||||||||||||||||||
0.16 | 0.18 | 0.21 | 0.18 | 0.24 | 0.29 | 0.07 | 0.13 | 0.18 | 0.21 | 0.24 | 0.26 | 0.88 | 0.91 | 0.93 | 0.18 | 0.24 | 0.29 | −0.38 | 0.26 | 0.50 | −0.44 | 0.20 | 0.44 | −0.04 | 0.00 | 0.80 | 0.96 | 1.15 | 1.34 | |
Rj Crisp | 0.18 | 0.24 | 0.13 | 0.24 | 0.91 | 0.24 | 0.16 | 0.10 | 0.19 | 1.15 | ||||||||||||||||||||
−0.37 | 0.00 | 0.49 | −0.37 | 0.01 | 0.51 | −0.40 | −0.02 | 0.48 | −0.36 | 0.01 | 0.50 | 0.11 | 0.51 | 1.00 | −0.29 | 0.10 | 0.60 | −0.57 | −0.02 | 0.54 | −0.54 | 0.02 | 0.58 | −0.56 | −0.14 | 0.76 | 0.55 | 1.26 | 2.06 | |
Qj Crisp | 0.03 | 0.04 | 0.01 | 0.04 | 0.53 | 0.13 | −0.01 | 0.02 | −0.02 | 1.28 | ||||||||||||||||||||
(WQI)c | 0.949 | 0.951 | 0.952 | 0.950 | 0.687 | 0.870 | 0.983 | 0.932 | 1.0 | 0.0 | ||||||||||||||||||||
M | M | M | M | M | M | H | M | H | L |
Well Field 1 | Well Field 2 | Well Field 3 | ||||||
---|---|---|---|---|---|---|---|---|
Qj | Well | Priority Rank | Qj | Well | Priority Rank | Qj | Well | Priority Rank |
W1-13 | 0.245 | 1 | W2-24 | 0.586 | 1 | W3-5 | 0.342 | 1 |
W1-3 | 0.157 | 2 | W2-25 | 0.421 | 2 | W3-6 | 0.250 | 2 |
W1-15 | 0.153 | 3 | W2-17 | 0.404 | 3 | W3-2 | 0.215 | 3 |
W1-6 | 0.150 | 4 | W2-23 | 0.353 | 4 | W3-7 | 0.181 | 4 |
W1-10 | 0.146 | 5 | W2-16 | 0.350 | 5 | W3-8 | 0.171 | 5 |
W1-14 | 0.140 | 6 | W2-21 | 0.336 | 6 | W3-1 | 0.034 | 6 |
W1-5 | 0.142 | 7 | W2-31 | 0.278 | 7 | W3-4 | 0.010 | 7 |
W1-2 | 0.133 | 8 | W2-26 | 0.272 | 8 | W3-3 | −0.030 | 8 |
W1-1 | 0.129 | 9 | W2-30 | 0.268 | 9 | - | - | - |
W1-7 | 0.124 | 10 | W2-20 | 0.266 | 10 | - | - | - |
W1-8 | 0.123 | 11 | W2-28 | 0.200 | 11 | - | - | - |
W1-11 | 0.102 | 12 | W2-19 | 0.181 | 12 | - | - | - |
W1-12 | 0.092 | 13 | W2-18 | 0.160 | 13 | - | - | - |
W1-4 | 0.076 | 14 | W2-22 | 0.146 | 14 | - | - | - |
W1-9 * | −0.048 | - | W2-27 | 0.093 | 15 | - | - | - |
- | - | - | W2-29 | 0.047 | 16 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, H.; Ghumman, A.R.; Al-Salamah, I.S.; Thabit, H. Assessment Framework for Natural Groundwater Contamination in Arid Regions: Development of Indices and Wells Ranking System Using Fuzzy VIKOR Method. Water 2020, 12, 423. https://doi.org/10.3390/w12020423
Haider H, Ghumman AR, Al-Salamah IS, Thabit H. Assessment Framework for Natural Groundwater Contamination in Arid Regions: Development of Indices and Wells Ranking System Using Fuzzy VIKOR Method. Water. 2020; 12(2):423. https://doi.org/10.3390/w12020423
Chicago/Turabian StyleHaider, Husnain, Abdul Razzaq Ghumman, Ibrahim Saleh Al-Salamah, and Hussein Thabit. 2020. "Assessment Framework for Natural Groundwater Contamination in Arid Regions: Development of Indices and Wells Ranking System Using Fuzzy VIKOR Method" Water 12, no. 2: 423. https://doi.org/10.3390/w12020423
APA StyleHaider, H., Ghumman, A. R., Al-Salamah, I. S., & Thabit, H. (2020). Assessment Framework for Natural Groundwater Contamination in Arid Regions: Development of Indices and Wells Ranking System Using Fuzzy VIKOR Method. Water, 12(2), 423. https://doi.org/10.3390/w12020423