Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen
<p>Daily minimum (T<sub>n</sub>) and maximum (T<sub>x</sub>) temperature, mean (T<sub>avg</sub>) temperature, daily (Precip) and total (∑Precip) precipitation recorded during the 2017 (<b>a</b>) and 2017/2018 (<b>b</b>) growing seasons, Hatfield, South Africa.</p> "> Figure 1 Cont.
<p>Daily minimum (T<sub>n</sub>) and maximum (T<sub>x</sub>) temperature, mean (T<sub>avg</sub>) temperature, daily (Precip) and total (∑Precip) precipitation recorded during the 2017 (<b>a</b>) and 2017/2018 (<b>b</b>) growing seasons, Hatfield, South Africa.</p> "> Figure 2
<p>Selected visualization of soil solution nitrate concentrations and soil water tension recorded from rainfed (<b>a</b>), irrigated to field capacity every week (<b>b</b>), irrigated with 15 mm every week (<b>c</b>), irrigated to field capacity when one or two of the soil water sensors turned green/red (<b>d</b>). The open circles indicate nitrate concentrations from test strips (white circle = soil nitrate level below 10 mg/L, purple circle = soil nitrate between 25–100 mg/L). The color pattern blue = wet, green = intermediate and red = dry soil.</p> "> Figure 3
<p>Grain yield to total above-ground dry matter yield ratio (harvest index) as a function of above-ground dry matter yield (1 t ha<sup>−1</sup> = 0.l kg m<sup>−2</sup>) (data 2018).</p> "> Figure 4
<p>Water use efficiency (WUE) in the first season (<b>A</b>) TDM (total dry matter) kg m<sup>−3</sup>, (<b>B</b>) grain kg m<sup>−3</sup>) and second season, (<b>C</b>) TDM (total dry matter) kg m<sup>−3</sup>, and (<b>D</b>) grain kg m<sup>−3</sup>) as affected by water and nitrogen treatments. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) according to the Tukey-HSD test. Note: I<sub>0</sub>—zero irrigation, I<sub>1</sub>—irrigated every week, I<sub>2</sub>—irrigated every second week, I<sub>15</sub>—15 mm irrigation, I<sub>30</sub>—30 mm irrigation, I<sub>A</sub>—adaptive irrigation.</p> "> Figure 5
<p>Irrigation water use efficiency (IUE) in the first season (<b>A</b>) TDM (total dry matter) kg m<sup>−3</sup>, (<b>C</b>) grain kg m<sup>−3</sup>) and second season (<b>B</b>) TDM (total dry matter) kg m<sup>−3</sup>, (<b>D</b>) grain kg m<sup>−3</sup>), as affected by water and nitrogen treatments. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) according to the Tukey-HSD test.</p> "> Figure 6
<p>Nitrogen use efficiency (NUE) of pearl millet in the first season (<b>A</b>) TDM (total dry matter) kg TDM kg<sup>−1</sup> <span class="html-italic">N</span>, (<b>C</b>) grain yield kg grain kg<sup>−1</sup> <span class="html-italic">N)</span> and second season (<b>B</b>) TDM (total dry matter) kg TDM kg<sup>−1</sup> <span class="html-italic">N</span>, (<b>D</b>) grain yield kg grain kg<sup>−1</sup> <span class="html-italic">N</span>), as affected by different water and N application regimes. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) according to Tukey-HSD test.</p> "> Figure 7
<p>Partial factor productivity (PFP) in the first season (<b>A</b>) TDM (total dry matter) kg TDM kg<sup>−1</sup> <span class="html-italic">N</span>, (<b>C</b>) grain yield kg grain kg<sup>−1</sup> <span class="html-italic">N</span>) and in the second season (<b>B</b>) TDM (total dry matter) kg TDM kg<sup>−1</sup> <span class="html-italic">N</span>, (<b>D</b>) grain yield kg grain kg<sup>−1</sup> <span class="html-italic">N</span>, as affected by irrigation and nitrogen levels in 2017 and 2018. Different letters indicate significant differences (<span class="html-italic">p</span> < 0.05) according to Tukey-HSD test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Treatments
2.2.1. Open Field Treatments (2017)
2.2.2. Rainout Shelter Treatments (2017/2018)
2.2.3. Fixed N Application Rates
2.2.4. Fixed Irrigation Treatments
2.2.5. Adaptive N (Nsoil)
2.2.6. Adaptive Water (Adapt-W)
2.3. Data Collection and Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Seasonal Weather Data
3.2. Water Use
3.3. Growth Parameters
3.3.1. Plant Height
3.3.2. Number of Tillers
3.3.3. Stem Diameter
3.3.4. Leaf Area Index (LAI)
3.3.5. Panicle Number, Length and Diameter
3.3.6. Flowering Date
3.3.7. Harvest Index
3.4. Final Yields
3.4.1. Grain Yield
3.4.2. Biomass Yields
3.4.3. Leaf to Stem Ratio
3.5. Water Use Efficiency (WUE)
3.6. Irrigation Water Use Efficiency (IUE)
3.7. Agronomic Nitrogen Use Efficiency (NUE)
3.8. Partial Factor of Productivity (PFP)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, H.T.; Blum, A. Physiology and Biotechnology Integration for Plant Breeding; Marcel Dekker Incl: New York, NY, USA, 2004. [Google Scholar]
- Ismail, S.M. Optimizing productivity and irrigation water use efficiency of pearl millet as a forage crop in arid regions under different irrigation methods and stress. Afr. J. Agric. Res. 2012, 7, 2509–2518. [Google Scholar]
- Yadav, O.; Bhatnagar, S. Evaluation of indices for identification of pearl millet cultivars adapted to stress and non-stress conditions. Field Crop. Res. 2001, 70, 201–208. [Google Scholar] [CrossRef]
- Spencer, D.; Sivakumar, M. Pearl Millet in African Agriculture. In Proceedings of the International Pearl Millet Workshop, Patancheru, India, 7–11 April 1986; ICRISAT: Hyderabad, India, 1987. [Google Scholar]
- McIntire, J.; Fussell, L.K. On-farm Experiments with Millet in Niger: Crop Establishment, Yield Loss Factors and Economic Analysis. Exp. Agric. 1989, 25, 217–233. [Google Scholar] [CrossRef]
- Diouf, O.; Brou, Y.C.; Diouf, M.; Sarr, B.; Eyletters, M.; Roy-Macauley, H.; Delhaye, J.P. Response of Pearl Millet to nitrogen as affected by water deficit. Agron. J. 2004, 24, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Craufurd, P.; Bidinger, F. Potential and realized yield in pearl millet (Pennisetum americanum) as influenced by plant population density and life-cycle duration. Field Crop. Res. 1989, 22, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.D.; A Manian, A.; Hall, D.; Harcus, J.L.; Hewlett, E.L. Antileishmanial activity of chlorpromazine. Antimicrob. Agents Chemother. 1984, 25, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Bidinger, F.R.; Raju, D.S. Mechanisms of adjustment by different pearl millet plant types to varying plant population densities. J. Agric. Sci. 2000, 134, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Omiti, J.M.; Otieno, D.J.; Nyanamba, T.O.; Mccullough, E. Factors influencing the intensity of market participation by smallholder farmers: A case study of rural and peri-urban areas of Kenya. Afr. J. Agric. Res. Econ. 2009, 3, 57–82. [Google Scholar]
- Carberry, P.; Campbell, L.; Bidinger, F. The growth and development of pearl millet as affected by plant population. Field Crop. Res. 1985, 11, 193–205. [Google Scholar] [CrossRef]
- Payne, W.A. Managing yield and water use of pearl millet in the Sahel. Agron. J. 1997, 89, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Payne, W.A. Optimizing Crop Water Use in Sparse Stands of Pearl Millet. Agron. J. 2000, 92, 808–814. [Google Scholar] [CrossRef]
- Wichelns, D. Investing in small, private irrigation to increase production and enhance livelihoods. Agric. Water Manag. 2014, 131, 163–166. [Google Scholar] [CrossRef]
- Bergström, L.; Brink, N. Effects of differentiated applications of fertilizer N on leaching losses and distribution of inorganic N in the soil. Plant Soil 1986, 93, 333–345. [Google Scholar] [CrossRef]
- Huang, W.-Y. Factors Contributing to the Recent Increase in US Fertilizer Prices, 2002-08; DIANE Publishing: Darby, PA, USA, 2009. [Google Scholar]
- Stirzaker, R.; Hutchinson, P. Irrigation controlled by a wetting front detector: Field evaluation under sprinkler irrigation. Soil Res. 2006, 43, 935–943. [Google Scholar] [CrossRef] [Green Version]
- Van Der Laan, M.; Stirzaker, R.; Annandale, J.; Bristow, K.; Du Preez, C. Monitoring and modelling draining and resident soil water nitrate concentrations to estimate leaching losses. Agric. Water Manag. 2010, 97, 1779–1786. [Google Scholar] [CrossRef]
- Stirzaker, R.J. When to turn the water off: scheduling micro-irrigation with a wetting front detector. Irrig. Sci. 2003, 22, 177–185. [Google Scholar] [CrossRef]
- Stirzaker, R. Factors affecting sensitivity of wetting front detectors. Acta Hortic. 2008, 792, 647–653. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Sendzimir, J.; Jeffrey, P.; Aerts, J.; Berkamp, G.; Cross, K. Managing change toward adaptive water management through social learning. Ecol. Soc. 2007, 12, 30. [Google Scholar] [CrossRef]
- Stirzaker, R.J.; Roux, D.J.; Biggs, H.C. Learning to bridge the gap between adaptive management and organisational culture. Koedoe 2011, 53, 28–33. [Google Scholar] [CrossRef]
- Bjornlund, H.; Parry, K.; Stirzaker, R.; van Rooyen, A.; Moyo, M.; Mdemu, M.; de Sousa, W.; Cheveia, E.; Munguambe, P.; Kimaro, E.; et al. Transforming smallholder irrigation into profitable and self-sustaining systems in southern Africa; ICRISAT: Hyderabad, India, 2018. [Google Scholar]
- Donald, C.; Hamblin, J. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 1976, 28, 361–405. [Google Scholar]
- Jovanovic, N.; Annandale, J.; Mhlauli, N. Field water balance and SWB parameter determination of six winter vegetable species. Water Sa-Pretoria 1999, 25, 191–196. [Google Scholar]
- Bos, M. Summary of ICID definitions of irrigation efficiency. ICID Bull. 1985, 34, 28–31. [Google Scholar]
- Niu, J.; Zhang, W.; Chen, X.; Li, C.; Zhang, F.; Jiang, L.; Liu, Z.; Xiao, K.; Assaraf, M.; Imas, P. Potassium Fertilization on Maize under Different Production Practices in the North China Plain. Agron. J. 2011, 103, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.L.; Federer, W.T. Experimental Design: Theory and Application. J. Am. Stat. Assoc. 1956, 51, 667. [Google Scholar] [CrossRef]
- Huynh, H.; Feldt, L.S. Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs. J. Educ. Stat. 1976, 1, 69–82. [Google Scholar] [CrossRef]
- SAS. Base SAS® 9.4 Procedures Guide, 5th ed.; SAS Institute Inc: Cary, CA, USA, 2015. [Google Scholar]
- Ong, C.; Monteith, J. Response of pearl millet to light and temperature. Field Crop. Res. 1985, 11, 141–160. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, P.; Echarte, L.; Della Maggiora, A.; Sadras, V.O.; Echeverría, H.; Andrade, F.H. Maize Evapotranspiration and Water-Use Efficiency in Response to Row Spacing. Agron. J. 2012, 104, 939–944. [Google Scholar] [CrossRef]
- Maman, N.; Lyon, D.J.; Mason, S.C.; Galusha, T.D.; Higgins, R. Pearl Millet and Grain Sorghum Yield Response to Water Supply in Nebraska. Agron. J. 2003, 95, 1618–1624. [Google Scholar] [CrossRef] [Green Version]
- Ayub, M.; Nadeem, M.A.; Ibrahim, M.; Aslam, M.N. Effect of nitrogen application and harvesting intervals on forage yield and quality of pearl millet (Pennisetum americanum L.). Pak. J. Life Soc. Sci. 2009, 7, 185–189. [Google Scholar]
- Bukhari, M. Effects of different harvesting intervals on growth, forage yield and quality of pearl millet (Pennisetum americanum L.) cultivars. M.sc, Faisalabad University of Agriculture, Faisalabad, Pakistan, 2009.
- Shao, H.-B. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Boil. Sci. 2008, 4, 8–14. [Google Scholar] [CrossRef]
- Ludlow, M.; Muchow, R. A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 1990, 43, 107–153. [Google Scholar]
- Millet, E.; Feldman, M. Yield response of a common spring wheat cultivar to inoculation withAzospirillum brasilense at various levels of nitrogen fertilization. Plant Soil 1984, 80, 255–259. [Google Scholar] [CrossRef]
- Mahalakshmi, V.; Bidinger, F.R. Flowering response of pearl millet to water stress during panicle development. Ann. Appl. Boil. 1985, 106, 571–578. [Google Scholar] [CrossRef]
- Seghatoleslami, M.; Kafi, M.; Majidi, E. Effect of drought stress at different growth stages on yield and water use efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pak. J. Bot. 2008, 40, 1427–1432. [Google Scholar]
- Ayub, M.; Nadeem, A.; Tanveer, A.; Tahir, M.; Khan, R.M.A. Interactive effect of different nitrogen levels and seeding rates on fodder yield and quality of pearl millet. Pak. J. Agri. Sci. 2007, 44, 592–596. [Google Scholar]
- Singh, B.; Singh, D. Agronomic and physiological responses of sorghum, maize and pearl millet to irrigation. Field Crop. Res. 1995, 42, 57–67. [Google Scholar] [CrossRef]
- Rostamza, M.; Chaichi, M.-R.; Jahansouz, M.-R.; Alimadadi, A. Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels. Agric. Water Manag. 2011, 98, 1607–1614. [Google Scholar] [CrossRef]
- Obeng, E.; Cebert, E.; Singh, B.P.; Ward, R.; Nyochembeng, L.M.; Mays, D.A. Growth and Grain Yield of Pearl Millet (Pennisetum glaucum) Genotypes at Different Levels of Nitrogen Fertilization in the Southeastern United States. J. Agric. Sci. 2012, 4, 155. [Google Scholar] [CrossRef] [Green Version]
- Pudelko, J.; Wright, D.L.; Teare, I.D. A Method for Salvaging Bird Damaged Pearl Millet Research; North Florida Research and Education Center: Quincy, FL, USA, 1993. [Google Scholar]
- Teare, I.; Wright, D.; Pudelko, J. Physiological development of HGM-100 to planting date and available water. Proceeding of the 1994 Southern Conservation Tillage Conference for Sustainable Agriculture, Columbia, CO, USA, 7–9 June 1994. [Google Scholar]
- Yadav, R.S.; Hash, C.T.; Bidinger, F.R.; Cavan, G.P.; Howarth, C.J. Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor. Appl. Genet. 2002, 104, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Garrity, D.P.; Sullivan, C.Y.; Watts, D.G. Moisture Deficits and Grain Sorghum Performance: Drought Stress Conditioning 1. Agron. J. 1983, 75, 997–1004. [Google Scholar] [CrossRef]
- Hattendorf, M.J.; Redelfs, M.S.; Amos, B.; Stone, L.R.; Gwin, R.E. Comparative Water Use Characteristics of Six Row Crops. Agron. J. 1988, 80, 80–85. [Google Scholar] [CrossRef]
- Serraj, R.; Hash, C.T.; Rizvi, S.M.H.; Sharma, A.; Yadav, R.S.; Bidinger, F.R. Recent Advances in Marker-Assisted Selection for Drought Tolerance in Pearl Millet. Plant Prod. Sci. 2005, 8, 334–337. [Google Scholar] [CrossRef]
- Yadav, R.; Bidinger, F.; Hash, C.; Yadav, Y.; Yadav, O.; Bhatnagar, S.; Howarth, C. Mapping and characterisation of QTL × E interactions for traits determining grain and stover yield in pearl millet. Theor. Appl. Genet. 2003, 106, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Nagaz, K.; Masmoudi, M.; Mechila, N. Yield and water use-efficiency of pearl millet (Pennisetum glaucum (L.) R. Br.) under deficit irrigation with saline water in arid conditions of Southern Tunisia. Res. J. Agron. 2009, 3, 9–17. [Google Scholar]
- Radhouane, L. Evaluation of indices for identification of pearl millet ecotypes (Pennisetum glaucum) adapted to stress and no stress conditions. Sci. Int. 2013, 1, 64–69. [Google Scholar] [CrossRef]
- Reddy, B.; Reddy, P.S.; Bidinger, F.; Blümmel, M. Crop management factors influencing yield and quality of crop residues. Field Crop. Res. 2003, 84, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.R.; Hatfield, R.D. Structural and chemical changes of cell wall types during stem development: consequences for fibre degradation by rumen microflora. Aust. J. Agric. Res. 1997, 48, 165–180. [Google Scholar] [CrossRef]
- Payne, W.A.; Drew, M.C.; Hossner, L.R.; Lascano, R.J.; Onken, A.B.; Wendt, C.W.; Malcolm, D.C. Soil Phosphorus Availability and Pearl Millet Water-Use Efficiency. Crop. Sci. 1992, 32, 1010–1015. [Google Scholar] [CrossRef]
- Maman, N.; Mason, S.C.; Galusha, T.; Clegg, M.D. Hybrid and Nitrogen Influence on Pearl Millet Production in Nebraska: Yield, Growth, and Nitrogen Uptake, and Nitrogen Use Efficiency. Agron. J. 1999, 91, 737–743. [Google Scholar] [CrossRef]
- Maman, N.; Mason, S.C.; Lyon, D.J. Nitrogen Rate Influence on Pearl Millet Yield, Nitrogen Uptake, and Nitrogen Use Efficiency in Nebraska. Commun. Soil Sci. Plant Anal. 2006, 37, 127–141. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO: A J. Human Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Ahmad, A.; Khaliq, T.; Akhtar, J. Recognizing production options for pearl millet in Pakistan under changing climate scenarios. J. Integr. Agric. 2017, 16, 762–773. [Google Scholar] [CrossRef] [Green Version]
- Shanahan, J.; Kitchen, N.; Raun, W.; Schepers, J. Responsive in-season nitrogen management for cereals. Comput. Electron. Agric. 2008, 61, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Akponikpe, P.B.; Michels, K.; Bielders, C.L. Integrated nutrient management of pearl millet in the Sahel combining cattle manure, crop residue and mineral fertilizer. Exp. Agric. 2008, 44, 453–472. [Google Scholar] [CrossRef]
- Kaizzi, K.C.; Byalebeka, J.; Semalulu, O.; Alou, I.; Zimwanguyizza, W.; Nansamba, A.; Musinguzi, P.; Ebanyat, P.; Hyuha, T.; Wortmann, C.S. Maize response to fertilizer and nitrogen use efficiency in Uganda. Agron. J. 2012, 104, 73–82. [Google Scholar] [CrossRef]
- Jothimani, S. Nitrogen Use Efficiency and its Balance Under Pearl Millet and Sorghum as Influenced by Long Term Manure and Fertilizer Application in Dryland Vertisols. Madras Agric. J. 2012, 99, 55–61. [Google Scholar]
- Dua, V.; Govindakrishnan, P.M.; Lal, S.S.; Khurana, S.M.P. Partial Factor Productivity of nitrogen in potato. Better Crop. 2007, 91, 26–27. [Google Scholar]
Soil Properties | Unit | Depth | |||
---|---|---|---|---|---|
2017 (Open Field) | 2018 (Rainshelter) | ||||
0–0.4 m | 0.4–0.6 m | 0–0.4 m | 0.4–0.6 m | ||
Physical Properties | |||||
Clay | % | 22.4 (2.00) | 28.0 (2.65) | 16.3 (1.53)a | 26.0 (2.00) |
Silt | % | 21.3 (2.34) | 23.6 (1.37) | 20.5 (1.06) | 17.3 (0.89) |
Sand | % | 56.3 (4.86) | 48.4 (1.78) | 63.2 (2.15) | 56.7 (2.87) |
Texture | Sandy clay loam | Sandy clay loam | Sandy clay loam | Sandy clay loam | |
Bulk Density | kg m−3 | 1506 (2.28) | 1152 (6.22) | 1712 (11.82) | 1682 (13.91) |
Field Capacity | m3 m−3 | 0.303 (0.007) | 0.339 (0.042) | 0.301 (0.008) | 0.325 (0.011) |
Permanent Wilting Point | m3 m−3 | 0.129 (0.017) | 0.149 (0.007) | 0.138 (0.008) | 0.191 (0.011) |
Chemical Properties | |||||
pH (H2O 1:1) | 6.50 (0.12) | 6.36 (0.19) | 7.08 (0.10) | 7.13 (0.09) | |
Organic Matter | % | 1.18 (0.02) | 0.94 (0.07) | 0.83 (0.09) | 0.67 (0.11) |
NH4 | mg kg−1 | 5.9 (0.7) | 6.3 (0.8) | 4.9 (0.50) | 4.6 (0.5) |
NO3 | mg kg−1 | 5.0 (0.5) | 7.6 (0.7) | 4.4 (0.70) | 3.2 (0.5) |
P | mg kg−1 | 85.3 (23.1) | 13.5 (2.2) | 51.3 (1.49) | 5.9 (1.16) |
K | mg kg−1 | 444 (16.7) | 456 (44.1) | 394 (13.5) | 570 (25.7) |
Ca | mg kg−1 | 1884 (37.1) | 1928 (19.0) | 1551 (32.10) | 2602 (24.3) |
Mg | mg kg−1 | 473 (11.5) | 504 (12.2) | 409 (13.90) | 494(11.9) |
Fe | mg kg−1 | 203(4.5) | 141 (6.3) | 175(10.74) | 164(12.6) |
Mn | mg kg−1 | 38.4 (2.5) | 49.6 (2.7) | 45.8 (1.10) | 45.9 (2.0) |
Cu | mg kg−1 | 3.47 (0.05) | 3.04 (0.04) | 3.17 (0.12) | 3.17 (0.14) |
Zn | mg kg−1 | 4.1 (0.2) | 3.1 (0.3) | 3.8 (0.10) | 5.1 (0.3) |
S | mg kg−1 | 10.3 (0.4) | 10.1 (0.05) | 9.9 (0.20) | 13.0 (0.2) |
B | mg kg−1 | 0.49 (0.03) | 0.51 (0.03) | 0.41 (0.02) | 0.70 (0.02) |
Fixed N Rate | Fixed Irrigation | Nsoil (2018) | Adapt-W | ||||||
---|---|---|---|---|---|---|---|---|---|
2017/2018 | N Rate kg/ha | 2017 | Regime Week | 2018 | Regime mm | Soil NO3 mg/L | N Rate kg/ha | Chameleon Sensor | Next Irrigation |
N0 | 0 | I0 | 0 | >50 | 0 | Red | Irrigated | ||
N45 | 45 | I1 | 1 | I15 | 15 | 25 ≥ 50 | 25 | Green | Cancelled |
N90 | 90 | I2 | 2 | I30 | 30 | <25 | 50 | Blue | Cancelled |
Treatment | Seasonal ET (mm) | Seasonal Irrigation (mm) | |||
---|---|---|---|---|---|
2018 | 2017 | 2018 | 2017 | 2018 | 2017 |
I15N0 | I0N0 | 238 | 273 | 187 | |
I30N0 | I0N45 | 427 | 248 | 357 | |
IAN0 | I0N90 | 289 | 223 | 297 | |
IAN45 | I1N0 | 406 | 293 | 450 | 73 |
IAN90 | I1N45 | 268 | 305 | 288 | 86 |
IANA | I1N90 | 289 | 302 | 332 | 85 |
I15NA | I2N0 | 238 | 291 | 187 | 85 |
I30NA | I2N45 | 427 | 293 | 357 | 74 |
I15N45 | I2N90 | 238 | 305 | 187 | 82 |
I15N90 | 238 | 187 | |||
I30N45 | 427 | 357 | |||
I30N90 | 427 | 357 |
Source | df | Mean Squares 2017 | |||||||
---|---|---|---|---|---|---|---|---|---|
PH | FI | PN | TN | FD | SD | PL | PD | ||
Replication | 2 | 0.096 ns | 00.00090 ** | 2.09 ns | 184.6 ns | 3.0 ns | |||
Irrigation | 2 | 0.79 *** | 0.0047 *** | 6244.09 *** | 7603.3 *** | 30.8 *** | |||
Nitrogen | 2 | 0.16 ** | 0.0046 *** | 721.00 *** | 303.8 * | 3.11 ns | |||
4 | 0.036ns | 0.0036 *** | 630.46 *** | 408.8 *** | 20.1 *** | ||||
Error | 16 | 0.020 | 0.00010 | 8.61 | 54.6 | 1.6 | |||
Total | 26 | ||||||||
2018 | |||||||||
Replication | 3 | 0.0038 ns | 0.000061 ns | 4.92 ns | 3.5 ns | 0.8 ns | 0.00000024 ns | 0.000074 ns | 0.000005 ns |
Irrigation | 2 | 0.0060ns | 0.0016 ** | 9.81 * | 485.8 *** | 1.0 ns | 0.00000190 *** | 0.00045 *** | 0.000019 *** |
Nitrogen | 3 | 0.11 *** | 0.011 *** | 47.47 *** | 920.3 *** | 6.1 ns | 0.00001924 *** | 0.0011 *** | 0.000076 ** |
6 | 0.03 *** | 0.0056 *** | 32.20 *** | 512.5 *** | 7.2 ns | 0.00000495 *** | 0.00072 *** | 0.000017 *** | |
Error | 33 | 0.0027 | 0.00019 | 2.83 | 6.9 | 15.3 | 0.00000021 | 0.0000455 | 0.0000012 |
Total | 47 |
PH | FI | PN | TN | FD | SD | PL | PD | |
---|---|---|---|---|---|---|---|---|
m | m−2 | m−2 | DAP | m | m | m | ||
Treatment 2017 | ||||||||
I0N0 | 1.23 d | 0.74 c | 44.81 g | 82.63 g | 79.00 ab | |||
I0N45 | 1.40 cd | 0.74 c | 52.58 f | 103.36 e | 82.00 a | |||
I0N90 | 1.53 bcd | 0.84 bc | 78.51 d | 96.56 f | 74.00 d | |||
I1N0 | 1.77 bc | 0.96 ab | 95.49 cd | 142.74 c | 76.00 bcd | |||
I1N45 | 1.90 ab | 0.91 ab | 100.88 bc | 140.91 c | 74.00 d | |||
I1N90 | 2.23 a | 0.97 a | 127.01 a | 165.46 a | 74.67 cd | |||
I2N0 | 1.80 b | 0.93 ab | 103.50 bc | 139.94 cd | 74.33 d | |||
I2N45 | 1.73 bc | 0.91 ab | 105.00 b | 134.58 d | 74.00 d | |||
I2N90 | 1.83 b | 0.95 ab | 90.35 d | 150.85 b | 78.00 bc | |||
HSD | 0.39 | 0.14 | 8.53 | 5.86 | 3.65 | |||
Treatment 2018 | ||||||||
I15N0 | 2.45 cd | 0.83 f | 19.25 bc | 88.75 bc | 58.00 | 0.0170 efg | 0.258 de | 0.0263 e |
I30N0 | 2.52 bc | 0.90 de | 18.00 c | 82.75 c | 61.25 | 0.0160 g | 0.253 e | 0.0284 e |
IAN0 | 2.45 cd | 0.90 de | 18.00 c | 72.50 d | 59.75 | 0.0170 efg | 0.275 abc | 0.0283 e |
I15N45 | 2.29 ef | 0.94 abc | 23.00 b | 81.50 c | 61.25 | 0.0180 cde | 0.265 cde | 0.0333 abc |
I30N45 | 2.36 def | 0.94 abc | 19.25 bc | 69.25 d | 59.75 | 0.0168 fg | 0.27 bcd | 0.0308 d |
IAN45 | 2.28 ef | 0.87 ef | 18.75 c | 71.75 d | 59.75 | 0.0170 efg | 0.27 bcd | 0.0311 cd |
I15N90 | 2.56 abc | 0.92 cde | 19.25 bc | 72.50 d | 59.75 | 0.0193 b | 0.275 bc | 0.0335 ab |
I30N90 | 2.66 a | 0.95 abc | 23.25 b | 69.00 d | 58.00 | 0.0190 bc | 0.295 a | 0.0347 a |
IAN90 | 2.25 f | 0.96 ab | 27.25 a | 92.25 ab | 59.75 | 0.0183 bcd | 0.275 bc | 0.0316 bcd |
I15NA | 2.56 abc | 0.93 c–e | 18.00 c | 88.75 bc | 61.50 | 0.0178 edf | 0.285 ab | 0.0276 e |
I30NA | 2.37 de | 0.91 de | 21.75 bc | 67.75 d | 61.25 | 0.0190 bc | 0.258 de | 0.0337 ab |
IANA | 2.62 ab | 0.97 a | 21.75 bc | 100.25 a | 59.75 | 0.0213 a | 0.295 a | 0.0347 a |
HSD | 0.12 | 0.03 | 4.17 | 8.67 | 8.72 | 0.0011 | 0.0168 | 0.0023 |
Source | Df | Mean Square 2017 | |||||||
---|---|---|---|---|---|---|---|---|---|
FBM | TDM | Grain | LDM | SDM | LSR | HI | LAI | ||
Replication | 2 | 71.0 * | 0.44 ns | 0.004 ns | 0.010 ns | 0.038 ns | 0.00009 ns | 0.0003 ns | 0.02 ns |
Irrigation | 2 | 369.3 *** | 3.66 *** | 0.05 *** | 0.075 *** | 2.59 *** | 0.007 *** | 0.017 *** | 16.4 *** |
Nitrogen | 2 | 190.5 *** | 1.90 *** | 0.1 *** | 0.072 *** | 1.41 *** | 0.01 *** | 0.004 ns | 4.8 *** |
4 | 6.6 *** | 0.58 ns | 0.004 ns | 0.0073 ns | 0.25 *** | 0.0009 ns | 0.003 ns | 1.1 *** | |
Error | 16 | 16.00 | 0.30 | 0.0012 | 0.0079 | 0.035 | 0.0002 | 0.0017 | 0.025 |
Total | 26 | ||||||||
2018 | |||||||||
Replication | 3 | 0.1 ns | 0.06 ns | 0.0008 ns | 0.001 ns | 0.017 ns | 0.007 * | 0.0004 ns | 0.6 ns |
Irrigation | 2 | 1.4 *** | 0.5 * | 0.01 * | 0.01 *** | 0.014 ns | 0.009 * | 0.02 *** | 0.6 ** |
Nitrogen | 3 | 11.8 *** | 0.7 ** | 0.1 *** | 0.02 *** | 0.19 *** | 0.005 ns | 0.02 *** | 2.8 *** |
6 | 12.1 *** | 1.5 *** | 0.07 *** | 0.02 *** | 0.31 *** | 0.007 * | 0.03 *** | 1.5 *** | |
Error | 33 | 0.15 | 0.13 | 0.0022 | 0.0010 | 0.012 | 0.0026 | 0.00040 | 0.17 |
Total | 47 |
FBM | TDM | Grain | LDM | SDM | LSR | HI | LAI | |
---|---|---|---|---|---|---|---|---|
kg m−2 | m2 m−2 | |||||||
Treatments 2017 | ||||||||
I0N0 | 3.34 c | 1.27 e | 0.32 d | 0.27 b | 1.00 d | 0.27 | 0.24 ab | 1.86 e |
I0N45 | 3.48 c | 1.37 de | 0.41 c | 0.30 b | 1.07 d | 0.32 | 0.30 a | 2.07 e |
I0N90 | 5.61 bc | 1.70 cde | 0.51 bc | 0.40 ab | 1.30 cd | 0.30 | 0.30 a | 3.92 c |
I1N0 | 8.79 bc | 2.43 bc | 0.43 c | 0.48 ab | 1.95 b | 0.25 | 0.18 b | 4.73 b |
I1N45 | 7.36 bc | 2.45 bc | 0.58 b | 0.44 ab | 2.01 b | 0.19 | 0.24 ab | 5.04 b |
I1N90 | 15.10 a | 3.97 a | 0.68 a | 0.63 a | 3.35 a | 0.20 | 0.17 b | 6.18 a |
I2N0 | 6.72 bc | 1.41 de | 0.31 d | 1.10 d | 0.28 | 0.27 ab | 3.42 d | |
I2N45 | 8.278 bc | 2.17 bcd | 0.54 b | 0.37 b | 1.80 bc | 0.22 | 0.25 ab | 4.72 b |
I2N90 | 10.22 ab | 2.66 b | 0.56 b | 0.52 ab | 2.14 b | 0.25 | 0.21 ab | 4.27 c |
LSD | 5.80 | 0.82 | 0.10 | 0.26 | 0.65 | 0.15 | 0.12 | 0.46 |
Treatments 2018 | ||||||||
I15N0 | 7.54 bc | 2.25 bc | 0.49 d | 0.33 a | 1.08 ab | 0.31 ab | 0.17 e | 3.99 e |
I30N0 | 3.63 h | 1.58 c | 0.53 cd | 0.22 bc | 0.62 c | 0.35 ab | 0.29 cd | 4.30 ed |
IAN0 | 5.57 ef | 1.62 c | 0.56 bcd | 0.29 ab | 0.71 c | 0.42 a | 0.32 bc | 4.28 ed |
I15N45 | 4.71 fg | 1.77 c | 0.85 a | 0.25 abc | 0.71 c | 0.36 ab | 0.44 a | 5.21 bc |
I30N45 | 4.09 gh | 1.65 c | 0.63 bc | 0.16 c | 0.65 c | 0.26 b | 0.35 b | 5.24 b |
IAN45 | 5.13 ef | 2.11 bc | 0.66 b | 0.22 bc | 0.78 c | 0.35 ab | 0.27 cd | 4.38 cde |
I15N90 | 4.87 fg | 1.63 c | 0.85 a | 0.23 abc | 0.67 c | 0.35 ab | 0.48 a | 4.88 bcd |
I30N90 | 8.56 a | 3.16 a | 0.79 a | 0.27 abc | 1.35 a | 0.28 b | 0.25 d | 5.42 b |
IAN90 | 5.49 ef | 2.23 bc | 0.62 bc | 0.24 abc | 0.86 bc | 0.31 ab | 0.27 cd | 5.43 b |
I15NA | 6.75 cd | 1.71 c | 0.55 bcd | 0.30 ab | 0.89 bc | 0.33 ab | 0.31 bc | 4.69 c–e |
I30NA | 5.88 de | 1.84 c | 0.61 bcd | 0.25 abc | 0.80 bc | 0.34 ab | 0.28 cd | 4.60 c–e |
IANA | 8.25 ab | 2.80 ab | 0.85 a | 0.27 abc | 1.21 a | 0.32 ab | 0.29 cd | 6.28 a |
LSD | 0.97 | 0.91 | 0.12 | 0.12 | 0.28 | 0.13 | 0.050 | 0.85 |
Source | WUE | IUE | PFP | NUE | |||||
---|---|---|---|---|---|---|---|---|---|
df(a) | TDM | Grain | TDM | Grain | TDM | Grain | TDM | Grain | |
Replication | 2 | 0.15 ns | 0.008 ns | 7.4 ns | 0.15 ns | 263.0 ns | 12.49 ns | 4447.2 ns | 268.6 ns |
Irrigation | 2 | 29.1 *** | 0.3 *** | 131.5 *** | 1.3 *** | 48229.9 *** | 1215.9 *** | 18799.0 * | 383.7 * |
Nitrogen | 2 | 49.8 *** | 1.2 *** | 440.7 *** | 8.5 *** | 51892.5 *** | 6697.9 *** | 176.9 ns | 90.2 ns |
4 | 4.4 *** | 0.2 *** | 263.7 *** | 5.3 *** | 2577.4 * | 186.6 *** | 25236.6 * | 529.7 * | |
Error | 16(10) | 0.071 | 0.003 | 2.6 | 0.04 | 398.6 | 8.27 | 4327.2 | 77.6 |
Total | 26(17) | ||||||||
Replication | 3 | 0.29 ns | 0.02 ns | 0.4 ns | 0.09 ns | 918.6 ns | 28.9 ns | 132.5 ns | 51.5 ** |
Irrigation | 2 | 39.8 *** | 8.8 *** | 106.1 *** | 14.5 *** | 57433.4 *** | 4782.4 *** | 20240.6 *** | 1744.5 *** |
Nitrogen | 3 | 15.8 *** | 1.6 *** | 9.1 *** | 2.4 *** | 246693.1 *** | 33642.7 *** | 12296.3 *** | 1482.5 *** |
6 | 5.6 ** | 1.0 *** | 4.4 *** | 1.2 *** | 37002.8 *** | 872.8 *** | 8460.6 *** | 2592.9 *** | |
Error | 33(24) | 1.14 | 0.04 | 0.34 | 0.10 | 825.7 | 55.2 | 112.5 | 10.7 |
Total | 47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausiku, A.P.; Annandale, J.G.; Steyn, J.M.; Sanewe, A.J. Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water 2020, 12, 422. https://doi.org/10.3390/w12020422
Ausiku AP, Annandale JG, Steyn JM, Sanewe AJ. Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water. 2020; 12(2):422. https://doi.org/10.3390/w12020422
Chicago/Turabian StyleAusiku, Ausiku P., John G. Annandale, J. Martin Steyn, and Andrew J. Sanewe. 2020. "Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen" Water 12, no. 2: 422. https://doi.org/10.3390/w12020422
APA StyleAusiku, A. P., Annandale, J. G., Steyn, J. M., & Sanewe, A. J. (2020). Improving Pearl Millet (Pennisetum glaucum) Productivity through Adaptive Management of Water and Nitrogen. Water, 12(2), 422. https://doi.org/10.3390/w12020422