Molecular Dynamics Simulation of Clay Mineral–Water Interfaces: Temperature-Dependent Structural, Dynamical, and Mechanical Properties
<p>Schematic representation of simulation models of kaolinite, montmorillonite, and pyrophyllite systems with confined water.</p> "> Figure 2
<p>MSD of water molecules confined in (<b>a</b>) kaolinite; (<b>b</b>) montmorillonite; and (<b>c</b>) pyrophyllite interlayers at different temperatures.</p> "> Figure 3
<p>Comparison of MDS of water molecules confined in kaolinite, montmorillonite, and pyrophyllite interlayers at (<b>a</b>) 298.15 K; (<b>b</b>) 313.15 K; and (<b>c</b>) 363.15 K.</p> "> Figure 4
<p>Density profiles of water molecules confined in the interlayers of (<b>a</b>) kaolinite; (<b>b</b>) montmorillonite; and (<b>c</b>) pyrophyllite at different temperatures (298.15 K, 303.15 K, 313.15 K, 333.15 K, and 363.15 K) along the normalized <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <mi>l</mi> <mi>z</mi> </mrow> </semantics></math> direction.</p> "> Figure 5
<p>Charge density maps of water molecules confined in the interlayers of (<b>a</b>) kaolinite, (<b>b</b>) montmorillonite, and (<b>c</b>) pyrophyllite at three temperatures (298.15 K, 318.15 K, and 368.15 K) in the X−Z plane.</p> "> Figure 6
<p>Temporal evolution and average number of hydrogen bonds formed by water molecules confined in (<b>a</b>) kaolinite, (<b>b</b>) montmorillonite, and (<b>c</b>) pyrophyllite interlayers at various temperatures. (<b>d</b>) The variation of the average hydrogen bond number with temperature for the three clay systems.</p> "> Figure 7
<p>Stress distributions of water molecules confined within the interlayers of (<b>a</b>) kaolinite; (<b>b</b>) montmorillonite; and (<b>c</b>) pyrophyllite at different temperatures. The color scale represents stress magnitudes, with red indicating compressive stress and blue indicating tensile stress.</p> ">
Abstract
:1. Introduction
2. Modeling Details
2.1. Kaolinite
2.2. Montmorillonite
2.3. Pyrophyllite
2.4. Water
3. Results
3.1. Temperature-Dependent Diffusion Behavior
3.2. Temperature Effects on Density and Charge Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; He, H.; Tao, Q.; Zhu, J.; Tan, W.; Ji, S.; Yang, Y.; Zhang, C. Kaolinization of 2:1 Type Clay Minerals with Different Swelling Properties. Am. Miner. 2020, 105, 687–696. [Google Scholar] [CrossRef]
- Teich-McGoldrick, S.L.; Greathouse, J.A.; Jové-Colón, C.F.; Cygan, R.T. Swelling Properties of Montmorillonite and Beidellite Clay Minerals from Molecular Simulation: Comparison of Temperature, Interlayer Cation, and Charge Location Effects. J. Phys. Chem. C 2015, 119, 20880–20891. [Google Scholar] [CrossRef]
- Doi, A.; Ejtemaei, M.; Nguyen, A.V. Effects of Ion Specificity on the Surface Electrical Properties of Kaolinite and Montmorillonite. Miner. Eng. 2019, 143, 105929. [Google Scholar] [CrossRef]
- Salles, F.; Douillard, J.-M.; Bildstein, O.; El Ghazi, S.; Prélot, B.; Zajac, J.; Van Damme, H. Diffusion of Interlayer Cations in Swelling Clays as a Function of Water Content: Case of Montmorillonites Saturated with Alkali Cations. J. Phys. Chem. C 2015, 119, 10370–10378. [Google Scholar] [CrossRef]
- Voora, V.K.; Al-Saidi, W.A.; Jordan, K.D. Density Functional Theory Study of Pyrophyllite and M-Montmorillonites (M = Li, Na, K, Mg, and Ca): Role of Dispersion Interactions. J. Phys. Chem. A 2011, 115, 9695–9703. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.; Fuentes, H.R. A Langmuir Isotherm-Based Prediction of Competitive Sorption of Sr, Cs, and Co in Ca-Montmorillonite. Waste Manag. 1993, 13, 327–332. [Google Scholar] [CrossRef]
- Brochard, L. Swelling of Montmorillonite from Molecular Simulations: Hydration Diagram and Confined Water Properties. J. Phys. Chem. C 2021, 125, 15527–15543. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, M.; Ferrage, E.; Delville, A.; Michot, L.J. Anisotropy on the Collective Dynamics of Water Confined in Swelling Clay Minerals. J. Phys. Chem. A 2012, 116, 2379–2387. [Google Scholar] [CrossRef] [PubMed]
- Bridgeman, J.; Jefferson, B.; Parsons, S.A. Computational Fluid Dynamics Modelling of Flocculation in Water Treatment: A Review. Eng. Appl. Comput. Fluid Mech. 2009, 3, 220–241. [Google Scholar] [CrossRef]
- Sun, L.; Tanskanen, J.T.; Hirvi, J.T.; Kasa, S.; Schatz, T.; Pakkanen, T.A. Molecular Dynamics Study of Montmorillonite Crystalline Swelling: Roles of Interlayer Cation Species and Water Content. Chem. Phys. 2015, 455, 23–31. [Google Scholar] [CrossRef]
- Mignon, P.; Ugliengo, P.; Sodupe, M.; Hernandez, E.R. Ab Initio Molecular Dynamics Study of the Hydration of Li+, Na+ and K+ in a Montmorillonite Model. Influence of Isomorphic Substitution. Phys. Chem. Chem. Phys. 2009, 12, 688–697. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.J.; Kalinichev, A.G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Shen, X.; Bourg, I.C. Molecular Dynamics Simulations of the Colloidal Interaction between Smectite Clay Nanoparticles in Liquid Water. J. Colloid Interface Sci. 2021, 584, 610–621. [Google Scholar] [CrossRef]
- Moussa, C.; Xu, J.; Wang, X.; Zhang, J.; Chen, Z.; Li, X. Molecular Dynamics Simulation of Hydrated Na-Montmorillonite with Inorganic Salts Addition at High Temperature and High Pressure. Appl. Clay Sci. 2017, 146, 206–215. [Google Scholar]
- Su, X.; Ma, L.; Wei, J.; Zhu, R. Structure and Thermal Stability of Organo-Vermiculite. Appl. Clay Sci. 2016, 132–133, 261–266. [Google Scholar] [CrossRef]
- Yebra-Rodríguez, A.; Alvarez-Lloret, P.; Rodríguez-Navarro, A.B.; Martín-Ramos, J.D.; Cardell, C. Thermo-XRD and Differential Scanning Calorimetry to Trace Epitaxial Crystallization in PA6/Montmorillonite Nanocomposites. Mater. Lett. 2009, 63, 1159–1161. [Google Scholar] [CrossRef]
- Shafei, L.; Adhikari, P.; San, S.; Ching, W.Y. Electronic Structure and Mechanical Properties of Solvated Montmorillonite Clay Using Large-Scale DFT Method. Crystals 2023, 13, 1120. [Google Scholar] [CrossRef]
- Schmidt, S.R.; Katti, D.R.; Ghosh, P.; Katti, K.S. Evolution of Mechanical Response of Sodium Montmorillonite Interlayer with Increasing Hydration by Molecular Dynamics. Langmuir 2005, 21, 8069–8076. [Google Scholar] [CrossRef] [PubMed]
- Boek, E.S. Molecular Dynamics Simulations of Interlayer Structure and Mobility in Hydrated Li-, Na- and K-Montmorillonite Clays. Mol. Phys. 2014, 112, 1472–1483. [Google Scholar] [CrossRef]
- Chen, W.Q.; Sedighi, M.; Curvalle, F.; Jivkov, A.P. Elevated Temperature Effects (T > 100 °C) on the Interfacial Water and Microstructure Swelling of Na-Montmorillonite. Chem. Eng. J. 2024, 481, 148647. [Google Scholar] [CrossRef]
- González Sánchez, F.; Jurányi, F.; Gimmi, T.; Van Loon, L.; Unruh, T.; Diamond, L.W. Translational Diffusion of Water and Its Dependence on Temperature in Charged and Uncharged Clays: A Neutron Scattering Study. J. Chem. Phys. 2008, 129, 174706. [Google Scholar] [CrossRef]
- Pingquan, W.; Tao, T.; Junlin, S.; Qiurun, W.; Ping, Y.; Yang, B. Review of Application of Molecular Simulation in Inhibiting Surface Hydration Expansion of Clay Minerals. Chem. Technol. Fuels Oils 2022, 58, 63–76. [Google Scholar] [CrossRef]
- Lu, M.; Huang, W.; Zheng, Y.Y. Molecular Dynamics Simulation Study of the Effects of Water Content and Wettability on the Shear Properties of Kaolinite for the Failure of Clay Soil. ACS Appl. Nano Mater. 2024, 7, 2843–2854. [Google Scholar] [CrossRef]
- Ramsis, Y.; Sarris, E.; Papaloizou, L.; Gravanis, E.; Vattis, D. The Influence of Activation Methodologies on the Rheological and Filtration Characteristics of Cyprus Smectites for Potential Use as Low Density Solids in Drilling Fluids. A Case Study of Polycanthos Quarry. In Proceedings of the 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 25–28 June 2023. [Google Scholar]
- Churakov, S.V. Ab Initio Study of Sorption on Pyrophyllite: Structure and Acidity of the Edge Sites. J. Phys. Chem. B 2006, 110, 4135–4146. [Google Scholar] [CrossRef]
- Martins, D.M.S.; Molinari, M.; Gonçalves, M.A.; Mirão, J.P.; Parker, S.C. Toward Modeling Clay Mineral Nanoparticles: The Edge Surfaces of Pyrophyllite and Their Interaction with Water. J. Phys. Chem. C 2014, 118, 27308–27317. [Google Scholar] [CrossRef]
- Ramsis, Y.; Sarris, E.; Papaloizou, L.; Vattis, D. The Effect of Polymer Amendment on the Colloidal Properties of a Waste K+-Rich Bentonite for Water-Based Drilling Fluid Applications. Key Eng. Mater. 2024, 997, 63–70. [Google Scholar] [CrossRef]
- Ramsis, Y.; Papaloizou, L.; Sarris, E.; Vattis, D. On the Colloidal and Filtration Properties of a Polymer-Amended Waste K+-Rich Bentonite for Use as a Low-Density Solid Additive in Water-Based Drilling Fluids. IOP Conf. Ser. Earth Environ. Sci. 2024, 1393, 012008. [Google Scholar] [CrossRef]
- Ramsis, Y.; Gravanis, E.; Sarris, E. Colloidal Properties of Polymer Amended Cyprus Bentonite for Water-Based Drilling Fluid Applications. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132983. [Google Scholar] [CrossRef]
- Jasiok, B.; Pribylov, A.A.; Postnikov, E.B.; Friant-Michel, P.; Millot, C. Thermophysical Properties of the SPC/E Model of Water between 250 and 400 K at Pressures up to 1000 MPa. Fluid Phase Equilibria 2024, 584, 114118. [Google Scholar] [CrossRef]
- Laage, D.; Hynes, J.T. A Molecular Jump Mechanism of Water Reorientation. Science 2006, 311, 832–835. [Google Scholar] [CrossRef]
- Koneshan, S.; Rasaiah, J.C.; Lynden-Bell, R.M.; Lee, S.H. Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 °C. J. Phys. Chem. B 1998, 102, 4193–4204. [Google Scholar] [CrossRef]
- Smith, D.E. Molecular Computer Simulations of the Swelling Properties and Interlayer Structure of Cesium Montmorillonite. Langmuir 1998, 14, 5959–5967. [Google Scholar] [CrossRef]
- Vural, D.; Hong, L.; Smith, J.C.; Glyde, H.R. Long-Time Mean-Square Displacements in Proteins. Phys. Rev. E 2013, 88, 052706. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.O.; Nigussa, K.N. Temperature Dependence Study of Water Dynamics in Fluorohectorite Clays Using Molecular Dynamics Simulations. Adv. Condens. Matter Phys. 2023, 2023, 7005896. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, X. NEMD Modeling of Nanoscale Hydrodynamics of Clay-Water System at Elevated Temperature. Int. J. Numer. Anal. Methods Geomech. 2021, 46, 889–909. [Google Scholar] [CrossRef]
- Tang, A.-M.; Cui, Y.-J. Controlling Suction by Vapour Equilibrium Technique at Different Temperatures, Application to the Determination of the Water Retention Properties of MX80 Clay. Can. Geotech. J. 2007, 42, 287–296. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, X.; Liu, X.; Zhou, J.; Zhou, H. Hydration and Mobility of Interlayer Ions of (Nax, Cay)-Montmorillonite: A Molecular Dynamics Study. J. Phys. Chem. C 2014, 118, 29811–29821. [Google Scholar] [CrossRef]
- Hong, W.; Meng, J.; Li, C.; Yan, S.; He, X.; Fu, G. Effects of Temperature on Structural Properties of Hydrated Montmorillonite: Experimental Study and Molecular Dynamics Simulation. Adv. Civ. Eng. 2020, 2020, 8885215. [Google Scholar] [CrossRef]
- Ghasemi, M.; Moslemizadeh, A.; Shahbazi, K.; Mohammadzadeh, O.; Zendehboudi, S.; Jafari, S. Primary Evaluation of a Natural Surfactant for Inhibiting Clay Swelling. J. Pet. Sci. Eng. 2019, 178, 878–891. [Google Scholar] [CrossRef]
- Alnmr, A.; Alzawi, M.O.; Ray, R.; Abdullah, S.; Ibraheem, J. Experimental Investigation of the Soil-Water Characteristic Curves (SWCC) of Expansive Soil: Effects of Sand Content, Initial Saturation, and Initial Dry Unit Weight. Water 2024, 16, 627. [Google Scholar] [CrossRef]
- Vasilyeva, M.A.; Gusev, Y.A.; Shtyrlin, V.G.; Greenbaum Gutina, A.; Puzenko, A.; Ishai, P.B.; Feldman, Y. Dielectric Relaxation of Water in Clay Minerals. Clays Clay Miner. 2014, 62, 62–73. [Google Scholar] [CrossRef]
- Qiu, J.; Li, G.; Liu, D.; Jiang, S.; Wang, G.; Chen, P.; Zhu, X.; Yao, G.; Liu, X.; Lyu, X. Effect of Layer Charge Density on Hydration Properties of Montmorillonite: Molecular Dynamics Simulation and Experimental Study. Int. J. Mol. Sci. 2019, 20, 3997. [Google Scholar] [CrossRef]
- Qi, S.; Ma, W.; Zhang, X.; Wang, J.; Hu, X.; Wei, Z.; Liu, J. Effects of Remolding Water Content and Compaction Degree on the Dynamic Behavior of Compacted Clay Soils. Buildings 2024, 14, 2258. [Google Scholar] [CrossRef]
- Greathouse, J.A.; Cygan, R.T.; Fredrich, J.T.; Jerauld, G.R. Molecular Dynamics Simulation of Diffusion and Electrical Conductivity in Montmorillonite Interlayers. J. Phys. Chem. C 2016, 120, 1640–1649. [Google Scholar] [CrossRef]
- Thomas, D.N.; Judd, S.J.; Fawcett, N. Flocculation Modelling: A Review. Water Res. 1999, 33, 1579–1592. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, M. Study on Water Migration and the Microstructure of Unsaturated Expansive Clays. Q. J. Eng. Geol. Hydrogeol. 2024, 57, qjegh2023-067. [Google Scholar] [CrossRef]
- Alnmr, A.; Ray, R. Numerical Simulation of Replacement Method to Improve Unsaturated Expansive Soil. Pollack Period. 2023, 18, 41–47. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Chu, C.; Zhang, Y.; Zhang, Z.; Wan, J. Molecular Dynamics Simulation of Clay Mineral–Water Interfaces: Temperature-Dependent Structural, Dynamical, and Mechanical Properties. Water 2025, 17, 347. https://doi.org/10.3390/w17030347
Yang T, Chu C, Zhang Y, Zhang Z, Wan J. Molecular Dynamics Simulation of Clay Mineral–Water Interfaces: Temperature-Dependent Structural, Dynamical, and Mechanical Properties. Water. 2025; 17(3):347. https://doi.org/10.3390/w17030347
Chicago/Turabian StyleYang, Tong, Chunmei Chu, Yonggang Zhang, Zhen Zhang, and Junli Wan. 2025. "Molecular Dynamics Simulation of Clay Mineral–Water Interfaces: Temperature-Dependent Structural, Dynamical, and Mechanical Properties" Water 17, no. 3: 347. https://doi.org/10.3390/w17030347
APA StyleYang, T., Chu, C., Zhang, Y., Zhang, Z., & Wan, J. (2025). Molecular Dynamics Simulation of Clay Mineral–Water Interfaces: Temperature-Dependent Structural, Dynamical, and Mechanical Properties. Water, 17(3), 347. https://doi.org/10.3390/w17030347