Experimental Investigation of the Soil-Water Characteristic Curves (SWCC) of Expansive Soil: Effects of Sand Content, Initial Saturation, and Initial Dry Unit Weight
<p>The granular gradient curves of the tested mixtures.</p> "> Figure 2
<p>Soil-water characteristic curve.</p> "> Figure 3
<p>Images of the sample formation method: (<b>a</b>) mixing sand with expansive soil; (<b>b</b>) enclosing the sample in plastic bags to retain moisture; (<b>c</b>) setting it inside the ring; (<b>d</b>) applying static pressure using a hydraulic piston; (<b>e</b>) displaying the resultant specimen; and (<b>f</b>) the pressure apparatus device utilized in the current study.</p> "> Figure 4
<p>The squared error of models for different percentages of added sand at different initial degree of saturation, where FS refers to the percentage of added sand (%), D refers to the initial dry unit weight (kN/m<sup>3</sup>), and SR refers to the initial degree of saturation (%).</p> "> Figure 5
<p>The squared error of models for different percentages of added sand at different initial dry unit weights.</p> "> Figure 6
<p>SWCCs at the same initial degree of saturation but for different initial densities of the sand-clay mixtures.</p> "> Figure 6 Cont.
<p>SWCCs at the same initial degree of saturation but for different initial densities of the sand-clay mixtures.</p> "> Figure 7
<p>SWCCs at the same initial dry unit weight and variable initial degree of saturation for samples with different percentages of added sand.</p> "> Figure 7 Cont.
<p>SWCCs at the same initial dry unit weight and variable initial degree of saturation for samples with different percentages of added sand.</p> "> Figure 8
<p>Relationship between initial degree of saturation and saturated volumetric water content.</p> "> Figure 9
<p>SWCC at the same initial dry unit weight of 15.3 kN/m<sup>3</sup> and same initial degree of saturation of 75% for the samples of deferent percentages of added sand.</p> "> Figure 10
<p>Relationship between the fitting parameter α and percentage of added sand at the same initial dry unit weight of 15.3 kN/m<sup>3</sup> and same initial degree of saturation of 75%.</p> "> Figure 11
<p>SWCCs for sample mixtures of various percentages of added sand formed with the optimum degree of saturation and maximum dry unit weight of Proctor experiment.</p> "> Figure 12
<p>SWCCs for sample mixtures of various percentages of added sand formed with 75% of the initial degree of saturation and maximum dry unit weight of Proctor experiment.</p> "> Figure 13
<p>Relationship between the fitting parameter α and percentage of added sand at the initial maximum dry unit weight of standard Proctor test and for three initial degrees of saturation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology Overview
2.2. Experimental Materials
2.3. SWCC Regions and Definitions
- Air-entry value (ψa)
- Residual water content (θr)
- Boundary effect zone
- Transition zone
- Residual zone
2.4. Experimental Principle
2.5. Specimen Preparation
2.6. Experimental Procedures
- First, the sand and clay samples were dried with a thermostatic drying chamber at a temperature range of 105–110 °C for a minimum of 24 h.
- Second, the required percentage of sand was mixed with the clay in a dry state, and then the dry mixture was wetted to the prescribed initial moisture content. Cylindrical specimens of varying initial moisture content and initial dry unit weight were created using the mixture samples as illustrated in Figure 3.
- Third, prior to the application of suction, the test specimens were fully saturated via inundation of the bottom of the samples with distilled water for a week. This method, as per Fattah et al. [13], was determined to be the optimal method for achieving saturation. The mass of each mixture was measured using a high-precision electronic scale prior to insertion into the device.
- Fourth, the saturated samples were placed in the test device chamber, and suction stresses of pF = (1.8–2.5–3–3.6–4.2) were applied to expel the water from the soil sample.
- Fifth, after reaching balance for each applied suction stress, the soil samples were immediately weighed using a high-precision electronic.
- Sixth, the samples were subsequently dried for 24 h at 105 °C in an oven to obtain the mass of dried soil.
- Seventh, the maximum hygroscopic, corresponding to the previously mentioned suction stress of 17,783 kPa, was calculated.
3. Results and Discussion
3.1. Fitting Parameters of Fredlung Xing and Van Genuchten Models
3.2. Effect of Initial Dry Unit Weight on SWCC
3.3. Effect of Initial Degree of Saturation on SWCC
3.4. Effect of Percentage of Added Sand
3.5. Effect of Maximum Dry Unit Weight of Standard Proctor on SWCC
3.6. Interpreting the Influence of Initial Conditions on Expansive Soil’s SWCC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
FS | Percentage of added sand; (%) |
SR | Degree of saturation; (%) |
LL | Liquid limit; (%) |
PL | Plastic limit; (%) |
PI | Plastic index; (%) |
SL | Shrinkage limit; (%) |
w | Moisture content; (%) |
wopt | Optimal moisture content; (%) |
Dry Unit weight; (kN/m3) | |
Maximum dry unit weight; (kN/m3) | |
Unit weight of the water; (kN/m3) | |
pF | Decimal logarithm of the soil water stress conveyed by the height of a water column in centimeters; (-) |
h | Height of a water column; (cm) |
Suction; (kPa) | |
θ | Water content; (-) |
Air-entry value; (kPa) | |
θr | Residual volumetric water content; (-) |
Residual suction; (kPa) | |
θs | Saturated volumetric water content; (-) |
Fitting parameters; (-) | |
Hy | Hygroscopicity; (-) |
Volumetric water content of soil sample when the suction value is ; (-) | |
Wet soil mass; (g) | |
Dry soil mass; (g) | |
Density of water; (g/cm3) | |
Dry density of soil; (g/cm3) | |
Correction function; (-) | |
SWCC | Soil-water characteristic curve |
FX | Fredlund Xing model |
Appendix A
Initial State Parameters | m | n | α (kPa) | ϴs | Squared Error | ||
---|---|---|---|---|---|---|---|
FS (%) | (kN/m3) | SR (%) | |||||
0 | 13.28 | 75 | 1.15 | 0.49 | 3034.3 | 0.611 | 0.000981 |
0 | 13.95 | 75 | 1.12 | 0.47 | 2308.4 | 0.655 | 0.001083 |
0 | 14.63 | 75 | 1.11 | 0.45 | 1674.0 | 0.707 | 0.001105 |
0 | 15.3 | 75 | 1.10 | 0.45 | 1260.0 | 0.765 | 0.001075 |
10 | 14 | 75 | 1.10 | 0.48 | 1916.9 | 0.608 | 0.001131 |
10 | 14.66 | 75 | 1.09 | 0.46 | 1592.1 | 0.646 | 0.001136 |
10 | 15.3 | 75 | 1.07 | 0.42 | 1242.6 | 0.711 | 0.000758 |
10 | 16 | 75 | 1.06 | 0.40 | 975.9 | 0.753 | 0.001587 |
20 | 14.3 | 75 | 1.00 | 0.48 | 1600.0 | 0.546 | 0.000866 |
20 | 14.8 | 75 | 0.99 | 0.43 | 1490.0 | 0.585 | 0.001093 |
20 | 15.3 | 75 | 0.98 | 0.43 | 1150.0 | 0.623 | 0.000707 |
20 | 16 | 75 | 0.97 | 0.39 | 700.0 | 0.679 | 0.000869 |
30 | 15.3 | 75 | 0.9 | 0.46 | 484.9 | 0.59 | 0.000467 |
30 | 15.95 | 75 | 0.88 | 0.47 | 445.4 | 0.617 | 0.000276 |
30 | 16.6 | 75 | 0.85 | 0.47 | 348.7 | 0.649 | 0.000303 |
30 | 17.25 | 75 | 0.82 | 0.47 | 334 | 0.669 | 0.00038 |
40 | 15.3 | 75 | 0.77 | 0.51 | 470.7 | 0.467 | 0.00033 |
40 | 16.015 | 75 | 0.75 | 0.53 | 450 | 0.491 | 0.000347 |
40 | 16.73 | 75 | 0.73 | 0.54 | 373 | 0.523 | 0.000505 |
40 | 17.44 | 75 | 0.7 | 0.55 | 299 | 0.554 | 0.000352 |
50 | 15.3 | 75 | 0.63 | 0.7 | 232.7 | 0.411 | 0.0000748 |
50 | 16.35 | 75 | 0.6 | 0.71 | 300 | 0.43 | 0.000263 |
50 | 17.4 | 75 | 0.59 | 0.79 | 288.4 | 0.457 | 0.0000857 |
50 | 18.45 | 75 | 0.53 | 0.94 | 216.2 | 0.509 | 0.0000859 |
Initial State Parameters | m | n | α (1/kPa) | ϴs | Squared Error | ||
---|---|---|---|---|---|---|---|
FS (%) | (kN/m3) | SR (%) | |||||
0 | 13.28 | 75 | 0.26 | 1.35 | 0.00097 | 0.578 | 0.001234 |
0 | 13.95 | 75 | 0.26 | 1.34 | 0.00101 | 0.612 | 0.001141 |
0 | 14.63 | 75 | 0.25 | 1.34 | 0.00117 | 0.654 | 0.001857 |
0 | 15.3 | 75 | 0.24 | 1.32 | 0.00142 | 0.706 | 0.002261 |
10 | 14 | 75 | 0.26 | 1.34 | 0.001 | 0.562 | 0.001609 |
10 | 14.66 | 75 | 0.25 | 1.34 | 0.00108 | 0.594 | 0.001822 |
10 | 15.3 | 75 | 0.24 | 1.32 | 0.00148 | 0.653 | 0.001914 |
10 | 16 | 75 | 0.24 | 1.31 | 0.00166 | 0.686 | 0.004733 |
20 | 14.3 | 75 | 0.26 | 1.35 | 0.00097 | 0.51 | 0.001068 |
20 | 14.8 | 75 | 0.25 | 1.33 | 0.0012 | 0.542 | 0.002327 |
20 | 15.3 | 75 | 0.24 | 1.32 | 0.00151 | 0.581 | 0.002344 |
20 | 16 | 75 | 0.23 | 1.3 | 0.00196 | 0.624 | 0.003373 |
30 | 15.3 | 75 | 0.24 | 1.32 | 0.00189 | 0.532 | 0.002677 |
30 | 15.95 | 75 | 0.24 | 1.31 | 0.00208 | 0.56 | 0.001834 |
30 | 16.6 | 75 | 0.23 | 1.3 | 0.00244 | 0.593 | 0.002118 |
30 | 17.25 | 75 | 0.23 | 1.3 | 0.00253 | 0.617 | 0.002275 |
40 | 15.3 | 75 | 0.24 | 1.31 | 0.00194 | 0.442 | 0.000818 |
40 | 16.015 | 75 | 0.24 | 1.31 | 0.00201 | 0.463 | 0.000672 |
40 | 16.73 | 75 | 0.23 | 1.31 | 0.00222 | 0.492 | 0.001767 |
40 | 17.44 | 75 | 0.23 | 1.3 | 0.00252 | 0.521 | 0.001603 |
50 | 15.3 | 75 | 0.24 | 1.31 | 0.00269 | 0.386 | 0.000539 |
50 | 16.35 | 75 | 0.23 | 1.31 | 0.00281 | 0.411 | 0.000558 |
50 | 17.4 | 75 | 0.23 | 1.3 | 0.00307 | 0.447 | 0.000347 |
50 | 18.45 | 75 | 0.23 | 1.29 | 0.00407 | 0.503 | 0.00035 |
Initial State Parameters | m | n | α (1/kPa) | ϴs | Squared Error | ||
---|---|---|---|---|---|---|---|
FS (%) | (kN/m3) | SR (%) | |||||
0 | 13.95 | 72 | 1.1 | 0.47 | 2200 | 0.683 | 0.001513 |
0 | 13.95 | 81 | 1.125 | 0.52 | 2727.9 | 0.644 | 0.001336 |
0 | 13.95 | 91 | 1.15 | 0.55 | 4482.2 | 0.619 | 0.000976 |
0 | 13.95 | 100 | 1.17 | 0.56 | 5119.7 | 0.613 | 0.001038 |
10 | 14.66 | 64 | 1.05 | 0.45 | 1087.7 | 0.675 | 0.000862 |
10 | 14.66 | 80 | 1.1 | 0.49 | 2200 | 0.629 | 0.001016 |
10 | 14.66 | 91 | 1.12 | 0.54 | 4237.9 | 0.595 | 0.001135 |
10 | 14.66 | 100 | 1.13 | 0.56 | 4744.2 | 0.59 | 0.001121 |
20 | 15.3 | 53 | 0.97 | 0.42 | 819.5 | 0.705 | 0.005904 |
20 | 15.3 | 71 | 0.98 | 0.43 | 1135.5 | 0.631 | 0.003849 |
20 | 15.3 | 88 | 1.11 | 0.54 | 3799 | 0.558 | 0.000985 |
20 | 15.3 | 100 | 1.13 | 0.56 | 4202.8 | 0.561 | 0.000846 |
30 | 15.95 | 59 | 0.85 | 0.46 | 183.6 | 0.668 | 0.000253 |
30 | 15.95 | 74.6 | 0.88 | 0.46 | 437.2 | 0.62 | 0.001113 |
30 | 15.95 | 88 | 1.09 | 0.53 | 3500 | 0.501 | 0.000837 |
30 | 15.95 | 100 | 1.1 | 0.54 | 4000 | 0.499 | 0.00081 |
40 | 16.73 | 44.5 | 0.59 | 0.85 | 150.7 | 0.628 | 0.000416 |
40 | 16.73 | 74.8 | 0.72 | 0.54 | 372.4 | 0.525 | 0.000629 |
40 | 16.73 | 87.7 | 0.98 | 0.52 | 1150.7 | 0.493 | 0.00043 |
40 | 16.73 | 100 | 1 | 0.52 | 1877.2 | 0.47 | 0.000753 |
50 | 17.4 | 49.8 | 0.49 | 1.07 | 130 | 0.532 | 0.000569 |
50 | 17.4 | 74.7 | 0.59 | 0.79 | 288.4 | 0.457 | 0.000449 |
50 | 17.4 | 85 | 0.95 | 0.5 | 753.6 | 0.444 | 0.000534 |
50 | 17.4 | 100 | 0.97 | 0.5 | 992.1 | 0.438 | 0.000412 |
Initial State Parameters | m | n | α (1/kPa) | ϴs | Squared Error | ||
---|---|---|---|---|---|---|---|
FS (%) | (kN/m3) | SR (%) | |||||
0 | 13.95 | 72 | 0.25 | 1.33 | 0.00115 | 0.618 | 0.002417 |
0 | 13.95 | 81 | 0.25 | 1.33 | 0.0014 | 0.646 | 0.002101 |
0 | 13.95 | 91 | 0.26 | 1.36 | 0.00085 | 0.598 | 0.000476 |
0 | 13.95 | 100 | 0.27 | 1.36 | 0.00079 | 0.592 | 0.00025 |
10 | 14.66 | 64 | 0.25 | 1.33 | 0.0014 | 0.62 | 0.002865 |
10 | 14.66 | 80 | 0.26 | 1.35 | 0.00099 | 0.591 | 0.000787 |
10 | 14.66 | 91 | 0.26 | 1.36 | 0.00082 | 0.573 | 0.000882 |
10 | 14.66 | 100 | 0.27 | 1.36 | 0.00079 | 0.571 | 0.000632 |
20 | 15.3 | 53 | 0.23 | 1.3 | 0.00282 | 0.657 | 0.009762 |
20 | 15.3 | 71 | 0.24 | 1.32 | 0.0016 | 0.585 | 0.006401 |
20 | 15.3 | 88 | 0.26 | 1.35 | 0.00086 | 0.536 | 0.000995 |
20 | 15.3 | 100 | 0.26 | 1.36 | 0.00088 | 0.542 | 0.000408 |
30 | 15.95 | 59 | 0.22 | 1.28 | 0.00357 | 0.602 | 0.002456 |
30 | 15.95 | 74.6 | 0.24 | 1.32 | 0.00192 | 0.561 | 0.003107 |
30 | 15.95 | 88 | 0.26 | 1.35 | 0.00082 | 0.479 | 0.000109 |
30 | 15.95 | 100 | 0.27 | 1.36 | 0.00077 | 0.479 | 6.37 × 105 |
40 | 16.73 | 44.5 | 0.23 | 1.31 | 0.00404 | 0.603 | 0.000295 |
40 | 16.73 | 74.8 | 0.23 | 1.31 | 0.00219 | 0.492 | 0.001597 |
40 | 16.73 | 87.7 | 0.25 | 1.33 | 0.00145 | 0.466 | 0.000292 |
40 | 16.73 | 100 | 0.26 | 1.35 | 0.0011 | 0.448 | 0.000059 |
50 | 17.4 | 49.8 | 0.23 | 1.31 | 0.0044 | 0.516 | 9.18 × 105 |
50 | 17.4 | 74.7 | 0.23 | 1.32 | 0.00318 | 0.45 | 0.00015 |
50 | 17.4 | 85 | 0.24 | 1.32 | 0.00238 | 0.434 | 0.000186 |
50 | 17.4 | 100 | 0.24 | 1.32 | 0.00197 | 0.414 | 0.000138 |
Initial State Parameters | m | n | α (kPa) | ϴs | Squared Error | ||
---|---|---|---|---|---|---|---|
FS (%) | (kN/m3) | SR (%) | |||||
0 | 15.3 | 75 | 1.1 | 0.45 | 1260 | 0.765 | 0.001075 |
10 | 15.3 | 75 | 1.07 | 0.42 | 1242.6 | 0.711 | 0.000758 |
20 | 15.3 | 75 | 0.98 | 0.43 | 1150 | 0.623 | 0.000707 |
30 | 15.3 | 75 | 0.9 | 0.46 | 484.9 | 0.59 | 0.000467 |
40 | 15.3 | 75 | 0.77 | 0.51 | 470.7 | 0.467 | 0.00033 |
50 | 15.3 | 75 | 0.63 | 0.7 | 232.7 | 0.411 | 0.0000748 |
Initial State Parameters | m | n | α (1/kPa) | ϴs | Squared Error | ||
---|---|---|---|---|---|---|---|
FS (%) | (kN/m3) | SR (%) | |||||
0 | 15.3 | 75 | 0.24 | 1.32 | 0.00142 | 0.706 | 0.002261 |
10 | 15.3 | 75 | 0.24 | 1.32 | 0.00148 | 0.653 | 0.001914 |
20 | 15.3 | 75 | 0.24 | 1.32 | 0.00151 | 0.581 | 0.002344 |
30 | 15.3 | 75 | 0.24 | 1.32 | 0.00189 | 0.532 | 0.002677 |
40 | 15.3 | 75 | 0.24 | 1.31 | 0.00194 | 0.442 | 0.000818 |
50 | 15.3 | 75 | 0.24 | 1.31 | 0.00269 | 0.386 | 0.000539 |
Initial State Parameters | m | n | α (kPa) | ϴs | Squared Error | |||
---|---|---|---|---|---|---|---|---|
FS (%) | (kN/m3) | SR (%) | ||||||
SR = 75% | 0 | 13.95 | 75 | 1.12 | 0.47 | 2308.4 | 0.655 | 0.001083 |
10 | 14.66 | 75 | 1.09 | 0.43 | 1592.1 | 0.646 | 0.001136 | |
20 | 15.3 | 75 | 0.98 | 0.43 | 1150 | 0.623 | 0.000707 | |
30 | 15.95 | 75 | 0.88 | 0.47 | 445.4 | 0.617 | 0.000276 | |
40 | 16.73 | 75 | 0.73 | 0.54 | 373 | 0.523 | 0.000505 | |
50 | 17.4 | 75 | 0.59 | 0.79 | 288.4 | 0.457 | 0.0000857 | |
Optimum SR | 0 | 13.95 | 91 | 1.15 | 0.55 | 4482.2 | 0.619 | 0.000976 |
10 | 14.66 | 91 | 1.12 | 0.54 | 4237.9 | 0.595 | 0.001135 | |
20 | 15.3 | 88 | 1.11 | 0.54 | 3799 | 0.558 | 0.000985 | |
30 | 15.95 | 88 | 1.09 | 0.53 | 3500 | 0.501 | 0.000837 | |
40 | 16.73 | 87.7 | 0.98 | 0.52 | 1150.7 | 0.493 | 0.00043 | |
50 | 17.4 | 85 | 0.95 | 0.5 | 753.6 | 0.454 | 0.000534 | |
SR = 100% | 0 | 13.95 | 100 | 1.17 | 0.56 | 5119.7 | 0.613 | 0.001038 |
10 | 14.66 | 100 | 1.13 | 0.56 | 4744.2 | 0.59 | 0.001121 | |
20 | 15.3 | 100 | 1.13 | 0.56 | 4202.8 | 0.561 | 0.000846 | |
30 | 15.95 | 100 | 1.1 | 0.54 | 4000 | 0.499 | 0.00081 | |
40 | 16.73 | 100 | 1 | 0.52 | 1877.2 | 0.47 | 0.000753 | |
50 | 17.4 | 100 | 0.97 | 0.5 | 992.1 | 0.438 | 0.000412 |
Initial State Parameters | m | n | α (1/kPa) | ϴs | Squered Error | |||
---|---|---|---|---|---|---|---|---|
FS (%) | SR (%) | |||||||
SR = 75% | 0 | 13.95 | 75 | 0.26 | 1.34 | 0.00101 | 0.612 | 0.001141 |
10 | 14.66 | 75 | 0.25 | 1.34 | 0.00108 | 0.594 | 0.001822 | |
20 | 15.3 | 75 | 0.24 | 1.32 | 0.00151 | 0.581 | 0.002344 | |
30 | 15.95 | 75 | 0.24 | 1.31 | 0.00208 | 0.56 | 0.001834 | |
40 | 16.73 | 75 | 0.23 | 1.31 | 0.00222 | 0.492 | 0.001767 | |
50 | 17.4 | 75 | 0.23 | 1.3 | 0.00307 | 0.447 | 0.000347 | |
Optimum SR | 0 | 13.95 | 91 | 0.26 | 1.36 | 0.00085 | 0.598 | 0.000476 |
10 | 14.66 | 91 | 0.26 | 1.36 | 0.00082 | 0.573 | 0.000882 | |
20 | 15.3 | 88 | 0.26 | 1.35 | 0.00086 | 0.536 | 0.000995 | |
30 | 15.95 | 88 | 0.26 | 1.35 | 0.00082 | 0.479 | 0.000109 | |
40 | 16.73 | 87.7 | 0.25 | 1.33 | 0.00145 | 0.466 | 0.000292 | |
50 | 17.4 | 85 | 0.24 | 1.32 | 0.00238 | 0.434 | 0.000186 | |
SR = 100% | 0 | 13.95 | 100 | 0.27 | 1.36 | 0.00079 | 0.592 | 0.00025 |
10 | 14.66 | 100 | 0.27 | 1.36 | 0.00079 | 0.571 | 0.000632 | |
20 | 15.3 | 100 | 0.26 | 1.36 | 0.00088 | 0.542 | 0.000408 | |
30 | 15.95 | 100 | 0.27 | 1.36 | 0.00077 | 0.479 | 0.0000637 | |
40 | 16.73 | 100 | 0.26 | 1.35 | 0.0011 | 0.448 | 0.000059 | |
50 | 17.4 | 100 | 0.24 | 1.32 | 0.00197 | 0.414 | 0.000138 |
References
- Fredlund, D.G.; Sheng, D.; Zhao, J. Estimation of Soil Suction from the Soil-Water Characteristic Curve. Can. Geotech. J. 2011, 48, 186–198. [Google Scholar] [CrossRef]
- Alnmr, A.; Ray, R. Numerical Simulation of Replacement Method to Improve Unsaturated Expansive Soil. Pollack Period. 2023, 18, 41–47. [Google Scholar] [CrossRef]
- Szatmári, T.; Fischer, S. Performance of Drainage Geocomposites Applied as Capillary Break Layers. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1260, 012029. [Google Scholar] [CrossRef]
- Alnmr, A. Impact of Soil Composition on Maximum Depth of Wetting in Expansive Soils. Pollack Period. 2023, 19. [Google Scholar] [CrossRef]
- Alnmr, A.; Ray, R.P.; Alsirawan, R. A State-of-the-Art Review and Numerical Study of Reinforced Expansive Soil with Granular Anchor Piles and Helical Piles. Sustainability 2023, 15, 2802. [Google Scholar] [CrossRef]
- Alnmr, A.; Ray, R.P.; Alsirawan, R. Comparative Analysis of Helical Piles and Granular Anchor Piles for Foundation Stabilization in Expansive Soil: A 3D Numerical Study. Sustainability 2023, 15, 11975. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Rahardjo, H. Soil Mechanics for Unsaturated Soils; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Fischer, S. Investigation of Effect of Water Content on Railway Granular Supplementary Layers. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2021, 2021, 64–68. [Google Scholar] [CrossRef]
- Marinho, F.A.M.; Take, W.A.; Tarantino, A. Measurement of Matric Suction Using Tensiometric and Axis Translation Techniques. In Laboratory and Field Testing of Unsaturated Soils; Springer: Dordrecht, The Netherlands, 2009; pp. 3–19. [Google Scholar] [CrossRef]
- Bechtold, M.; Dettmann, U.; Wöhl, L.; Durner, W.; Piayda, A.; Tiemeyer, B. Comparing Methods for Measuring Water Retention of Peat near Permanent Wilting Point. Soil Sci. Soc. Am. J. 2018, 82, 601–605. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, L.; Wei, Y. Influence of Fine Content on the Soil–Water Characteristic Curve of Unsaturated Soils. Geotech. Geol. Eng. 2020, 38, 1371–1378. [Google Scholar] [CrossRef]
- Zeitoun, R.; Vandergeest, M.; Vasava, H.B.; Machado, P.V.F.; Jordan, S.; Parkin, G.; Wagner-Riddle, C.; Biswas, A. In-Situ Estimation of Soil Water Retention Curve in Silt Loam and Loamy Sand Soils at Different Soil Depths. Sensors 2021, 21, 447–461. [Google Scholar] [CrossRef]
- Fattah, M.Y.; Majeed, Q.G.; Joni, H.H. Comparison between Methods of Soil Saturation on Determination of the Soil Water Characteristic Curve of Cohesive Soils. Arab. J. Geosci. 2021, 14, 101. [Google Scholar] [CrossRef]
- Gardner, W.R. Mathematics of Isothermal Water Conduction in Unsaturated Soils; Highway Research Board Special Report; Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture: Riverside, CA, USA, 1958; pp. 78–87. [Google Scholar]
- Brooks, R.; Corey, A. Hydraulic Properties of Porous Media; Colorado State University, Hydrology and Water Resources Program: Fort Collins, CO, USA, 1964. [Google Scholar]
- van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the Soil-Water Characteristic Curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Matlan, S.; Taha, M.; Mukhlisin, M. Assessment of Model Consistency for Determination of Soil–Water Characteristic Curves. Arab. J. Sci. Eng. 2016, 41, 1233–1240. [Google Scholar] [CrossRef]
- Leong, E.C.; Rahardjo, H. Review of Soil-Water Characteristic Curve Equations. J. Geotech. Geoenvironmental Eng. 1997, 123, 1106–1117. [Google Scholar] [CrossRef]
- Li, P.; Li, T.; Vanapalli, S.K. Prediction of Soil–Water Characteristic Curve for Malan Loess in Loess Plateau of China. J. Cent. South Univ. 2018, 25, 432–447. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, G.; Liu, Y. Effects of Cementitious Grout Components on Rheological Properties. Constr. Build. Mater. 2019, 227, 116654. [Google Scholar] [CrossRef]
- Li, J.H.; Lu, Z.; Guo, L.B.; Zhang, L.M. Experimental Study on Soil-Water Characteristic Curve for Silty Clay with Desiccation Cracks. Eng. Geol. 2017, 218, 70–76. [Google Scholar] [CrossRef]
- Yan, W.M.; Zhang, G. Soil-Water Characteristics of Compacted Sandy and Cemented Soils with and without Vegetation. Can. Geotech. J. 2015, 52, 1331–1344. [Google Scholar] [CrossRef]
- Elkady, T.Y.; Al-Mahbashi, A.; Dafalla, M.; Al-Shamrani, M. Effect of Compaction State on the Soil Water Characteristic Curves of Sand–Natural Expansive Clay Mixtures. Eur. J. Environ. Civ. Eng. 2017, 21, 289–302. [Google Scholar] [CrossRef]
- Chi, Z.; Zeng, G.; Meng, Z.; Wu, S.; Zhang, W.; Tian, R. Experimental Study on Influence of Dry Density on Soil-Water Characteristic Curve of Hefei Expansive Soil. IOP Conf. Ser. Earth Environ. Sci. 2019, 384, 012149. [Google Scholar] [CrossRef]
- Gallage, C.P.K.; Uchimura, T. Effects of Dry Density and Grain Size Distribution on Soil-Water Characteristic Curves of Sandy Soils. Soils Found. 2010, 50, 161–172. [Google Scholar] [CrossRef]
- Heshmati, A.A.; Motahari, M.R. Modeling the Dependency of Suction Stress Characteristic Curve on Void Ratio in Unsaturated Soils. KSCE J. Civ. Eng. 2015, 19, 91–97. [Google Scholar] [CrossRef]
- Cao, B.; Tian, Y.; Gui, R.; Liu, Y. Experimental Study on the Effect of Key Factors on the Soil–Water Characteristic Curves of Fine-Grained Tailings. Front. Environ. Sci. 2021, 9, 710986. [Google Scholar] [CrossRef]
- Chen, X.; Hu, K.; Chen, J.; Zhao, W. Laboratory Investigation of the Effect of Initial Dry Density and Grain Size Distribution on Soil–Water Characteristic Curves of Wide-Grading Gravelly Soil. Geotech. Geol. Eng. 2018, 36, 885–896. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A.; Dai, G. Estimation of the Soil-Water Characteristic Curve from the Grain Size Distribution of Coarse-Grained Soils. Eng. Geol. 2020, 267, 105502. [Google Scholar] [CrossRef]
- Qiao, X.; Ma, S.; Pan, G.; Liu, G. Effects of Temperature Change on the Soil Water Characteristic Curve and a Prediction Model for the Mu Us Bottomland, Northern China. Water 2019, 11, 1235. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, D. Soil-Water Retention Behavior of Compacted Soil with Different Densities over a Wide Suction Range and Its Prediction. Comput. Geotech. 2017, 91, 17–26. [Google Scholar] [CrossRef]
- Pham, T.A.; Sutman, M. Modeling the Combined Effect of Initial Density and Temperature on the Soil–Water Characteristic Curve of Unsaturated Soils. Acta Geotech. 2023, 18, 6427–6455. [Google Scholar] [CrossRef]
- Pham, T.A.; Sutman, M.; Medero, G.M. Density-Dependent Model of Soil–Water Characteristic Curves and Application in Predicting Unsaturated Soil–Structure Bearing Resistance. Int. J. Geomech. 2023, 23, 04023017. [Google Scholar] [CrossRef]
- Roy, S.; Rajesh, S. Simplified Model to Predict Features of Soil–Water Retention Curve Accounting for Stress State Conditions. Int. J. Geomech. 2019, 20, 04019191. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A.; Dai, G.; Zhuang, Y. Framework to Estimate the Soil-Water Characteristic Curve for Soils with Different Void Ratios. Bull. Eng. Geol. Environ. 2020, 79, 4399–4409. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, J.L. Influences Affecting the Soil-Water Characteristic Curve. J. Zhejiang Univ. Sci. A 2005, 6, 797–804. [Google Scholar] [CrossRef]
- Alnmr, A.; Ray, R.P. Review of the Effect of Sand on the Behavior of Expansive Clayey Soils. Acta Tech. Jaurinensis 2021, 14, 521–552. [Google Scholar] [CrossRef]
- ASTM D6913/D6913M-17; Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM D7928-17; Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- ASTM D698-12e2; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- ASTM D4318-17e1; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Alnmr, A.; Ray, R. Investigating the Impact of Varying Sand Content on the Physical Characteristics of Expansive Clay Soils from Syria. Geotech. Geol. Eng. 2023. [Google Scholar] [CrossRef]
- AASHTO; AASHTO Standard Method of Test for The Classification of Soils and Soil Aggregate Mixtures for Highway Construction Purposes, Test Designation M145-91. AASHTO: Washington, DC, USA, 2002.
- ASTM D2487-17e1; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Holtz, R.; Kovacs, W.; Sheahan, T. An Introduction to Geotechnical Engineering; Prentice-Hall: Hoboken, NJ, USA, 1981. [Google Scholar]
- Fredlund, D.G.; Rahardjo, H.; Leong, L.C.; Ng, C.W.W. Suggestions and Recommendations for the Interpretation of Soil-Water Characteristic Curves. In Proceedings of the 14th Southeast Asian Geotechnical Conference, Hong Kong, China, 10–14 December 2001; pp. 503–508. [Google Scholar]
- Vanapalli, S.K.; Fredlund, D.D.; Barbour, S.L. A Rationale for an Extended Soil-Water Characteristic Curve. In Proceedings of the 49th Canadian Geotechnical Conference, St. John’s, NL, Canada, 23–25 September 1996; pp. 625–632. [Google Scholar]
- Lieberoth, I. Lehrbuch Der Bodenkumde; VEB, Deutscher Landwirtschaftsverlagberlin: Berlin, Germany, 1982. [Google Scholar]
- Wang, Y.H.; Fredlund, D.D. Towards a Better Understanding of the Role of the Contractile Skin. In Proceedings of the Second Asian Conference on Unsaturated Soils, Osaka, Japan, 15–17 April 2003; pp. 419–424. [Google Scholar]
Clay | Sand | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
Liquid limit; LL (%) | 79 | Uniformity coefficient; Cu (-) | 2.31 |
Plastic limit; PL (%) | 35 | Curvature coefficient; Cc (-) | 1.03 |
Plastic index; PI (%) | 44 | Maximum void ratio; emax (-) | 0.844 |
Shrinkage limit; SL (%) | 12 | Minimum void ratio; emin (-) | 0.585 |
Hydraulic Conductivity; k (m/day) | 9.4 × 107 | 1.24 | |
Specific gravity; G (-) | 2.70 | 2.65 | |
Percent Passing No. 200 sieve; (%) | 100 | 0 | |
Classification according to USCS (ASTM D2487-17e1) | High Plasticity Clay (CH) | Poorly graded sand (SP) |
Chemical Composition | % |
---|---|
Alumina (Al2O3) | 11.51 |
Ferric oxide (Fe2O3) | 5.49 |
Calcium oxide (CaO) | 12 |
Magnesium oxide (MgO) | 2.41 |
Silica (SiO2) | 49.79 |
Sodium oxide (Na2O) | 1.2 |
Potassium oxide (K2O) | 0.37 |
Loss of ignition (LoI) | 17.23 |
Sample Number | Sand Content [FS] (%) | (kN/m3) | Degree of Saturation [SR] (%) | Sample Number | Sand Content [FS] (%) | (kN/m3) | Degree of Saturation [SR] (%) |
---|---|---|---|---|---|---|---|
S1 | 0 | 13.28 | 75 | S25 | 0 | 13.95 | 72 |
S2 | 0 | 13.95 | 75 | S26 | 0 | 13.95 | 81 |
S3 | 0 | 14.63 | 75 | S27 | 0 | 13.95 | 91 |
S4 | 0 | 15.3 | 75 | S28 | 0 | 13.95 | 100 |
S5 | 10 | 14 | 75 | S29 | 10 | 14.66 | 64 |
S6 | 10 | 14.66 | 75 | S30 | 10 | 14.66 | 80 |
S7 | 10 | 15.3 | 75 | S31 | 10 | 14.66 | 91 |
S8 | 10 | 16 | 75 | S32 | 10 | 14.66 | 100 |
S9 | 20 | 14.3 | 75 | S33 | 20 | 15.3 | 53 |
S10 | 20 | 14.8 | 75 | S34 | 20 | 15.3 | 71 |
S11 | 20 | 15.3 | 75 | S35 | 20 | 15.3 | 88 |
S12 | 20 | 16 | 75 | S36 | 20 | 15.3 | 100 |
S13 | 30 | 15.3 | 75 | S37 | 30 | 15.95 | 59 |
S14 | 30 | 15.95 | 75 | S38 | 30 | 15.95 | 74.6 |
S15 | 30 | 16.6 | 75 | S39 | 30 | 15.95 | 88 |
S16 | 30 | 17.25 | 75 | S40 | 30 | 15.95 | 100 |
S17 | 40 | 15.3 | 75 | S41 | 40 | 16.73 | 44.5 |
S18 | 40 | 16.015 | 75 | S42 | 40 | 16.73 | 74.8 |
S19 | 40 | 16.73 | 75 | S43 | 40 | 16.73 | 87.7 |
S20 | 40 | 17.44 | 75 | S44 | 40 | 16.73 | 100 |
S21 | 50 | 15.3 | 75 | S45 | 50 | 17.4 | 49.8 |
S22 | 50 | 16.35 | 75 | S46 | 50 | 17.4 | 74.7 |
S23 | 50 | 17.4 | 75 | S47 | 50 | 17.4 | 85 |
S24 | 50 | 18.45 | 75 | S48 | 50 | 17.4 | 100 |
FS (%) | LL (%) | PL (%) | PI (%) | SL (%) | wopt (%) | (kN/m3) |
---|---|---|---|---|---|---|
0 | 78.8 | 34.6 | 44.2 | 12 | 31.6 | 13.95 |
10 | 72.1 | 32.2 | 39.9 | 13.8 | 28.4 | 14.66 |
20 | 63.3 | 27.7 | 35.6 | 14.9 | 25.4 | 15.3 |
30 | 55.8 | 24.5 | 31.3 | 15.7 | 22.4 | 15.95 |
40 | 48.6 | 21.4 | 27.2 | 16.4 | 19.7 | 16.73 |
50 | 41.1 | 17.9 | 23.2 | 17.1 | 17.5 | 17.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnmr, A.; Alzawi, M.O.; Ray, R.; Abdullah, S.; Ibraheem, J. Experimental Investigation of the Soil-Water Characteristic Curves (SWCC) of Expansive Soil: Effects of Sand Content, Initial Saturation, and Initial Dry Unit Weight. Water 2024, 16, 627. https://doi.org/10.3390/w16050627
Alnmr A, Alzawi MO, Ray R, Abdullah S, Ibraheem J. Experimental Investigation of the Soil-Water Characteristic Curves (SWCC) of Expansive Soil: Effects of Sand Content, Initial Saturation, and Initial Dry Unit Weight. Water. 2024; 16(5):627. https://doi.org/10.3390/w16050627
Chicago/Turabian StyleAlnmr, Ammar, Mounzer Omran Alzawi, Richard Ray, Safwan Abdullah, and Jihad Ibraheem. 2024. "Experimental Investigation of the Soil-Water Characteristic Curves (SWCC) of Expansive Soil: Effects of Sand Content, Initial Saturation, and Initial Dry Unit Weight" Water 16, no. 5: 627. https://doi.org/10.3390/w16050627
APA StyleAlnmr, A., Alzawi, M. O., Ray, R., Abdullah, S., & Ibraheem, J. (2024). Experimental Investigation of the Soil-Water Characteristic Curves (SWCC) of Expansive Soil: Effects of Sand Content, Initial Saturation, and Initial Dry Unit Weight. Water, 16(5), 627. https://doi.org/10.3390/w16050627