Neuraminidase Antibody Response to Homologous and Drifted Influenza A Viruses After Immunization with Seasonal Influenza Vaccines
<p>Molecular analysis and enzymatic activity of NA from A/H1N1pdm09 and A/H3N2 viruses. (<b>A</b>) A cartoon-style molecular model of NA from the A/Guangdong-Maonan/SWL1536/2019(H1N1)pdm09 virus, from amino acid 82 to 469 (numbering as in the case of the H1N1 2009 pandemic virus) with major amino acid substitutions in the structure indicated. (<b>B</b>) A molecular model of NA A/Brisbane/34/2018 (H3N2), from amino acid 82 to 469 (classical H3N2 strain numbering). (<b>C</b>) Enzymatic activity of NA of viruses A/H6N1 and A/H6N2 was studied in the desialyzation reaction of the high-molecular substrate (fetuin), sorbed on a polymeric carrier using peroxidase-labeled lectin. The OD450 was measured depending on the hemagglutinating activity of the viruses.</p> "> Figure 2
<p>Antibodies to A/H1N1pdm09 and A/H3N2 viruses in sera of patients vaccinated with inactivated influenza vaccines (IIVs) corresponded to the WHO recommendations for the Northern Hemisphere during the 2018–2019 flu season. The total number of participants was 64: 30 people were 60 years old and older and 34 were under 60 years old. (<b>A</b>) Antibody levels to HA and NA of influenza viruses A/South Africa/3626/13 (H1N1)pdm09, A/Hong Kong/4801/2014 (H3N2), A/Guangdong-Maonan/SWL 1536/2019(H1N1)pdm09 and A/Brisbane/34/2018(H3N2) pre- and post-vaccination. (<b>B</b>) The HI and NI antibody levels to the vaccine and drifting viruses A/H1N1pdm09 and A/H3N2 in sera collected before vaccination. Each point represents an individual patient serum, here and below: *—<span class="html-italic">p</span> < 0.05, ***—<span class="html-italic">p</span> < 0.001, ****—<span class="html-italic">p</span> < 0.0001. (<b>C</b>) Combined seroconversions to the vaccine and drifted influenza viruses on day 21 following vaccination with IIVs regardless of the vaccine type, presented by Venn’s diagrams. Numbers in circles present the absolute number of responders to each virus. The total number of subjects was 64, with 30 people 60 years old or older and 34 under 60. The number of nonresponders to both antigens is not shown on Venn’s diagram. Seroconversion to influenza A virus antigens was defined as a fourfold increase in HI antibody titers and a twofold increase in NI antibody titers.</p> "> Figure 3
<p>Antibody titers to HA and NA of influenza viruses in paired blood sera of patients vaccinated with seasonal IIVs 2018–2019 years of formulation (<span class="html-italic">n</span> = 64). S1—pre-vaccination antibody titers, S2—antibody titers 21 days after vaccination. The population in the analysis included all participants, regardless of age or vaccine type. Each dot represents an individual serum. (<b>A</b>) HI antibodies to A/Michigan/45/2015(H1N1)pdm09 and A/Guangdong-Maonan/SWL1536/2019(H1N1)pdm09 viruses. (<b>B</b>) NI antibodies to H6N1/13 and H6N1/19 influenza viruses. (<b>C</b>) HI antibodies to A/Singapore/INFIMH-16-0019/2016(H3N2) and A/Brisbane/34/2018(H3N2) virus. (<b>D</b>) NI antibodies to H6N2/14 and H6N2/18 influenza virus. ***—<span class="html-italic">p</span> < 0.001, ****—<span class="html-italic">p</span> < 0.0001.</p> "> Figure 4
<p>Proportions of individuals with antibody titers ≥ 1:40 for HI antibodies and ≥ 1:20 for NI antibodies to HA and NA of influenza viruses A/H1N1pdm09 and A/H3N2 post-vaccination with seasonal IIVs (<span class="html-italic">n</span> = 64). The population in the analysis included all participants, regardless of age or vaccine type. (<b>A</b>) The HI and NI antibodies to A/South Africa/3626/13 (H1N1)pdm09 and A/Hong Kong/4801/2014 (H3N2). (<b>B</b>) The HI and NI antibodies to A/Guangdong-Maonan/SWL 1536/2019(H1N1)pdm09 and A/Brisbane/34/2018 (H3N2).</p> "> Figure 5
<p>Seroprotection levels to HA and NA of influenza viruses A/H1N1pdm09 and A/H3N2 pre- and post-vaccination with seasonal IIVs in patients of different age groups. For HI antibodies, the seroprotection level was determined as 1:40, and for NI antibodies—as 1:20. *—<span class="html-italic">p</span> < 0.05, Fisher’s exact test.</p> "> Figure 6
<p>Results of the study of neutralizing antibodies using the MN test in MDCK cell line. S1—pre-vaccination antibody titers, S2—antibody titers 21 days after vaccination. ***—<span class="html-italic">p</span> < 0.001. (<b>A</b>) The NI antibodies to the H6N1/19 virus. The population in the analyses included all participants, regardless of age or vaccine type. (<b>B</b>) Correlation analysis of neutralizing antibodies and antibodies to HA and NA of the A/Guangdong-Maonan/SWL1536/2019(H1N1)pdm09 virus before and after vaccination. (<b>C</b>) The NI antibodies to the H6N2/18 virus. (<b>D</b>) Correlation analysis of neutralizing antibodies and antibodies to HA and NA of the A/Brisbane/34/2018(H3N2) virus before and after vaccination.</p> "> Figure 7
<p>Antibody titers against drifted A/H1N1pdm09 and A/H3N2 HA and NA in patients vaccinated with split influenza vaccines (<span class="html-italic">n</span> = 29) and subunit influenza vaccines (<span class="html-italic">n</span> = 35). Each dot represents an individual serum. (<b>A</b>) HI antibodies to the A/Guangdong-Maonan/SWL1536/2019(H1N1)pdm09 virus. (<b>B</b>) NI antibodies to H6N1/19 influenza virus. (<b>C</b>) HI antibodies to A/Brisbane/34/2018(H3N2) virus. (<b>D</b>) NI antibodies to H6N2/18 influenza virus. *—<span class="html-italic">p</span> < 0.05, ***—<span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surveyed Contingents and Samples
2.2. Influenza Viruses
2.3. The Enzyme-Linked Lectin Assay (ELLA)
2.4. Hemagglutination Inhibition Test (HI)
2.5. Microneutralization Reaction (MN)
2.6. Statistical Processing of Results
3. Results
3.1. Genetic Analysis of NA Subtypes N1 and N2 and Enzymatic Activity
3.2. Antibody Responses to A/H1N1pdm09 and A/H3N2 Viruses in Human Sera Pre- and Post-Immunization with Seasonal IIVs (2018–2019 Formulation)
3.3. Antibodies to A/H1N1pdm09 and A/H3N2 Viruses in Human Sera Before and After Immunization with Either a Split or Subunit IIV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins, J.P.; Santos, M.; Martins, A.; Felgueiras, M.; Santos, R. Seasonal influenza vaccine effectiveness in persons aged 15–64 years: A systematic review and meta-analysis. Vaccines 2023, 11, 1322. [Google Scholar] [CrossRef]
- Grohskopf, L.A. Prevention and control of seasonal influenza with vaccines: Recommendations of the Advisory Committee on Immunization Practices—United States, 2019–2020 influenza season. MMWR. Recomm. Rep. 2019, 68, 1–21. [Google Scholar] [CrossRef]
- Kilbourne, E.D.; Johansson, B.E.; Grajower, B. Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins. Proc. Natl. Acad. Sci. USA 1990, 87, 786–790. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, H.; Wen, S.; Chen, J.; Lei, Y.; Cheng, Y.; Huang, W.; Wang, D.; Shu, Y. Factors affecting the immunogenicity of influenza vaccines in humans. BMC Infect. Dis. 2023, 23, 211. [Google Scholar] [CrossRef]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef]
- Memoli, M.J.; Shaw, P.A.; Han, A.; Czajkowski, L.; Reed, S.; Athota, R.; Bristol, T.; Fargis, S.; Risos, K.; Powers, J.H.; et al. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model. MBio 2016, 7, 10–1128. [Google Scholar] [CrossRef]
- de Vries, R.D.; Altenburg, A.F.; Rimmelzwaan, G.F. Universal influenza vaccines: Science fiction or soon a reality? Expert Rev. Vaccines 2015, 14, 1299–1301. [Google Scholar] [CrossRef]
- Giurgea, L.T.; Morens, D.M.; Taubenberger, J.K.; Memoli, M.J. Influenza neuraminidase: A neglected protein and its potential for a better influenza vaccine. Vaccines 2020, 8, 409. [Google Scholar] [CrossRef]
- Maier, H.E.; Nachbagauer, R.; Kuan, G.; Ng, S.; Lopez, R.; Sanchez, N.; Stadlbauer, D.; Gresh, L.; Schiller, A.; Rajabhathor, A.; et al. Pre-existing antineuraminidase antibodies are associated with shortened duration of influenza A (H1N1) pdm virus shedding and illness in naturally infected adults. Clin. Infect. Dis. 2020, 70, 2290–2297. [Google Scholar] [CrossRef] [PubMed]
- Eichelberger, M.C.; Monto, A.S. Neuraminidase, the forgotten surface antigen, emerges as an influenza vaccine target for broadened protection. J. Infect. Dis. 2019, 219, S75–S80. [Google Scholar] [CrossRef]
- Krammer, F.; Palese, P. Advances in the development of influenza virus vaccines. Nat. Rev. Drug Discov. 2015, 14, 167–182. [Google Scholar] [CrossRef]
- Chen, Y.-Q.; Wohlbold, T.J.; Zheng, N.-Y.; Huang, M.; Huang, Y.; Neu, K.E.; Lee, J.; Wan, H.; Rojas, K.T.; Kirkpatrick, E.; et al. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 2018, 173, 417–429. [Google Scholar] [CrossRef]
- Cheung, J.T.L.; Tsang, T.K.; Yen, H.-L.; Perera, R.A.; Mok, C.K.P.; Lin, Y.P.; Cowling, B.J.; Peiris, M. Determining existing human population immunity as part of assessing influenza pandemic risk. Emerg. Infect. Dis. 2022, 28, 977–985. [Google Scholar] [CrossRef]
- Sandbulte, M.R.; Westgeest, K.B.; Gao, J.; Xu, X.; Klimov, A.I.; Russell, C.A.; Burke, D.F.; Smith, D.J.; Fouchier, R.A.M.; Eichelberger, M.C. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc. Natl. Acad. Sci. USA 2011, 108, 20748–20753. [Google Scholar] [CrossRef]
- Gao, J.; Couzens, L.; Burke, D.F.; Wan, H.; Wilson, P.; Memoli, M.J.; Xu, X.; Harvey, R.; Wrammert, J.; Ahmed, R.; et al. Antigenic drift of the influenza A (H1N1) pdm09 virus neuraminidase results in reduced effectiveness of A/California/7/2009 (H1N1pdm09)-specific antibodies. MBio 2019, 10, 10–1128. [Google Scholar] [CrossRef]
- Wan, H.; Gao, J.; Yang, H.; Yang, S.; Harvey, R.; Chen, Y.Q.; Zheng, N.-Y.; Chang, J.; Carney, P.J.; Li, X.; et al. The neuraminidase of A (H3N2) influenza viruses circulating since 2016 is antigenically distinct from the A/Hong Kong/4801/2014 vaccine strain. Nat. Microbiol. 2019, 4, 2216–2225. [Google Scholar] [CrossRef]
- World Health Organization. Recommended Composition of Influenza Virus Vaccines for Use in the 2018–2019 Northern Hemisphere Influenza Season. Available online: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2018-2019-northern-hemisphere-influenza-season (accessed on 6 November 2023).
- Sergeeva, M.V.; Romanovskaya-Romanko, E.A.; Krivitskaya, V.Z.; Kudar, P.A.; Petkova, N.N.; Kudria, K.S.; Lioznov, D.A.; Stukova, M.A.; Desheva, Y.A. Longitudinal Analysis of Neuraminidase and Hemagglutinin Antibodies to Influenza A Viruses after Immunization with Seasonal Inactivated Influenza Vaccines. Vaccines 2023, 11, 1731. [Google Scholar] [CrossRef]
- Erofeeva, M.K.; Nickonorov, I.J.; Maksakova, V.L.; Stukova, M.A.; Konshina, O.S.; Okhapkina, E.A.; Voicehovskaya, E.M.; Korovkin, S.A.; Melnikhov, S.J.; Kiselev, O.I. Protective properties of inactivated virosomal influenza vaccine. Procedia Vaccinol 2014, 8, 24–33. [Google Scholar] [CrossRef]
- Talayev, V.; Zaichenko, I.; Svetlova, M.; Matveichev, A.; Babaykina, O.; Voronina, E.; Mironov, A. Low-dose influenza vaccine Grippol Quadrivalent with adjuvant Polyoxidonium induces a T helper-2 mediated humoral immune response and increases NK cell activity. Vaccine 2020, 38, 6645–6655. [Google Scholar] [CrossRef]
- Erofeeva, M.K.; Stukova, M.A.; Shakhlanskaya, E.V.; Buzitskaya, Z.V.; Maksakova, V.L.; Krainova, T.I.; Pisareva, M.M.; Popov, A.B.; Pozdnjakova, M.G.; Lioznov, D.A. Evaluation of the Preventive Effectiveness of Influenza Vaccines in the Epidemic Season 2019–2020 in St. Petersburg. Epidemiol Vaccinal Prev 2021, 20, 52–60. [Google Scholar] [CrossRef]
- World Health Organization; Organisation Mondiale de la Santé. Recommended composition of influenza virus vaccines for use in the 2019–2020 northern hemisphere influenza season. Wkly. Epidemiol. Rec. 2019, 94, 141–150. [Google Scholar]
- Östbye, H.; Gao, J.; Martinez, M.R.; Wang, H.; de Gier, J.W.; Daniels, R. N-linked glycan sites on the influenza A virus neuraminidase head domain are required for efficient viral incorporation and replication. J. Virol. 2020, 94, 10–1128. [Google Scholar] [CrossRef]
- Xing, L.; Chen, Y.; Chen, B.; Bu, L.; Liu, Y.; Zeng, Z.; Guan, W.; Chen, Q.; Lin, Y.; Qin, K.; et al. Antigenic drift of the hemagglutinin from an influenza A (H1N1) pdm09 clinical isolate increases its pathogenicity in vitro. Virol. Sin. 2021, 36, 1220–1227. [Google Scholar] [CrossRef]
- Jagadesh, A.; Salam, A.A.A.; Zadeh, V.R.; Arunkumar, G. Genetic analysis of neuraminidase gene of influenza A(H1N1)pdm09 virus circulating in Southwest India from 2009 to 2012. J. Med. Virol. 2017, 89, 202–212. [Google Scholar] [CrossRef]
- Hurt, A.C.; Selleck, P.; Komadina, N.; Shaw, R.; Brown, L.; Barr, I.G. Susceptibility of highly pathogenic A (H5N1) avian influenza viruses to the neuraminidase inhibitors and adamantanes. Antivir. Res. 2007, 73, 228–231. [Google Scholar] [CrossRef]
- Stoner, T.D.; Krauss, S.; DuBois, R.M.; Negovetich, N.J.; Stallknecht, D.E.; Senne, D.A.; Gramer, M.R.; Swafford, S.; DeLiberto, T.; Govorkova, E.A.; et al. Antiviral susceptibility of avian and swine influenza virus of the N1 neuraminidase subtype. J. Virol. 2010, 84, 9800–9809. [Google Scholar] [CrossRef]
- Nuss, J.M.; Whitaker, P.B.; Air, G.M. Identification of critical contact residues in the NC41 epitope of a subtype N9 influenza virus neuraminidase. Proteins Struct. Funct. Bioinform. 1993, 15, 121–132. [Google Scholar] [CrossRef]
- Monto, A.S.; McKimm-Breschkin, J.L.; Macken, C.; Hampson, A.W.; Hay, A.; Klimov, A.; Tashiro, M.; Webster, R.G.; Aymard, M.; Hayden, F.G.; et al. Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use. Antimicrob. Agents Chemother. 2006, 50, 2395–2402. [Google Scholar] [CrossRef]
- Sleeman, K.; Mishin, V.P.; Guo, Z.; Garten, R.J.; Balish, A.; Fry, A.M.; Villanueva, J.; Stevens, J.; Gubareva, L.V. Antiviral susceptibility of variant influenza A (H3N2) v viruses isolated in the United States from 2011 to 2013. Antimicrob. Agents Chemother. 2014, 58, 2045–2051. [Google Scholar] [CrossRef]
- Leang, S.K.; Kwok, S.; Sullivan, S.G.; Maurer-Stroh, S.; Kelso, A.; Barr, I.G.; Hurt, A.C. Peramivir and laninamivir susceptibility of circulating influenza A and B viruses. Influenza Other Respir. Viruses 2014, 8, 135–139. [Google Scholar] [CrossRef]
- Air, G.M.; Els, M.C.; Brown, L.E.; Laver, W.G.; Webster, R.G. Location of antigenic sites on the three-dimensional structure of the influenza N2 virus neuraminidase. Virology 1985, 145, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Powell, H.; Pekosz, A. Neuraminidase antigenic drift of H3N2 clade 3c. 2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. PLoS Pathog. 2020, 16, e1008411. [Google Scholar] [CrossRef] [PubMed]
- Yatsyshina, S.B.; Artamonova, A.A.; Elkina, M.A.; Valdokhina, A.V.; Bulanenko, V.P.; Berseneva, A.A.; Akimkin, V.G. Genetic characteristics of influenza A and B viruses circulating in Russia in 2019–2023. J. Microbiol. Epidemiol. Immunobiol. 2024. [Google Scholar] [CrossRef]
- Altman, M.O.; Angeletti, D.; Yewdell, J.W. Antibody immunodominance: The key to understanding influenza virus antigenic drift. Viral Immunol. 2018, 31, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.; McMahon, M.; Turner, H.L.; Zhu, X.; Turner, J.S.; Ozorowski, G.; Stadlbauer, D.; Vahokoski1, J.; Schmitz, A.J.; Rizk, A.A.; et al. Human anti-N1 monoclonal antibodies elicited by pandemic H1N1 virus infection broadly inhibit HxN1 viruses in vitro and in vivo. Immunity 2023, 56, 1927–1938. [Google Scholar] [CrossRef]
- Lei, R.; Kim, W.; Lv, H.; Mou, Z.; Scherm, M.J.; Schmitz, A.J.; Turner, J.S.; Tan, T.J.; Wang, Y.; Ouyang, W.O.; et al. Leveraging vaccination-induced protective antibodies to define conserved epitopes on influenza N2 neuraminidase. Immunity 2023, 56, 2621–2634. [Google Scholar] [CrossRef]
- Carlock, M.A.; Allen, J.D.; Hanley, H.B.; Ross, T.M. Longitudinal assessment of human antibody binding to hemagglutinin elicited by split-inactivated influenza vaccination over six consecutive seasons. PLoS ONE 2024, 19, e0301157. [Google Scholar] [CrossRef]
- Monto, A.S.; Petrie, J.G.; Cross, R.T.; Johnson, E.; Liu, M.; Zhong, W.; Levine, M.; Katz, J.M.; Ohmit, S.E. Antibody to influenza virus neuraminidase: An independent correlate of protection. J. Infect. Dis. 2015, 212, 1191–1199. [Google Scholar] [CrossRef]
- Vogel, M.; Bachmann, M.F. Immunogenicity and immunodominance in antibody responses. Vaccin. Strateg. Against Highly Var. Pathog. 2020, 428, 89–102. [Google Scholar]
- Hoy, G.; Cortier, T.; Maier, H.E.; Kuan, G.; Lopez, R.; Sanchez, N.; Ojeda, S.; Plazaola, M.; Stadlbauer, D.; Shotwell, A.; et al. Anti-Neuraminidase Antibodies Reduce the Susceptibility to and Infectivity of Influenza A/H3N2 Virus. medRxiv 2024. [Google Scholar] [CrossRef]
- Khan, M.W.; Gallagher, M.; Bucher, D.; Cerini, C.P.; Kilbourne, E.D. Detection of influenza virus neuraminidase-specific antibodies by an enzyme-linked immunosorbent assay. J. Clin. Microbiol. 1982, 16, 115–122. [Google Scholar] [CrossRef]
- Smolonogina, T.A.; Desheva, I.A.; Shaldzhian, A.A.; Grudinin, M.P.; Rudenko, L.G. Formation of antibodies against neuraminidase of A/California/07/2009 (H1N1) influenza virus after immunization with live monovalent influenza vaccine. Zhurnal Mikrobiol. Epidemiol. I Immunobiol. 2011, 72–76. Available online: https://europepmc.org/article/med/22308734 (accessed on 16 November 2024).
- Desheva, Y.A.; Smolonogina, T.A.; Donina, S.A.; Rudenko, L.G. Serum strain-specific or cross-reactive neuraminidase inhibiting antibodies against pandemic А/California/07/2009 (H1N1) influenza in healthy volunteers. BMC Res. Notes 2015, 8, 136. [Google Scholar] [CrossRef] [PubMed]
- Mukasheva, E.; Kolobukhina, L.V.; Merkulova, L.V.; Kisteneva, L.B.; Zaplatnikov, A.L.; Smolonogina, T.A.; Desheva, Y.A.; Mikhaylova, E.V.; Romanovskaya, A.V.; Dubovitskaya, N.A.; et al. Serodiagnosis in the surveillance of the influenza virus circulation during the development of the pandemic caused by the A (H1N1) pdm09. Vopr. Virusol. 2015, 60, 19–24. [Google Scholar]
- Desheva, Y.; Sychev, I.; Smolonogina, T.; Rekstin, A.; Ilyushina, N.; Lugovtsev, V.; Samsonova, A.; Go, A.; Lerner, A. Anti-neuraminidase antibodies against pandemic A/H1N1 influenza viruses in healthy and influenza-infected individuals. PLoS ONE 2018, 13, e0196771. [Google Scholar] [CrossRef]
- Wohlbold, T.J.; Nachbagauer, R.; Xu, H.; Tan, G.S.; Hirsh, A.; Brokstad, K.A.; Cox, R.J.; Palese, P.; Krammer, F. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. MBio 2015, 6, e02556-14. [Google Scholar] [CrossRef]
- Belongia, E.A.; Sundaram, M.E.; McClure, D.L.; Meece, J.K.; Ferdinands, J.; VanWormer, J.J. Waning vaccine protection against influenza A (H3N2) illness in children and older adults during a single season. Vaccine 2015, 33, 246–251. [Google Scholar] [CrossRef]
- Monto, A.S.; Kendal, A.P. Effect of neuraminidase antibody on Hong Kong influenza. Lancet 1973, 1, 623–625. [Google Scholar] [CrossRef]
- Smith, A.J.; Davies, J.R. Natural infection with influenza A (H3N2). The development, persistence and effect of antibodies to the surface antigens. J. Hyg. 1976, 77, 271–282. [Google Scholar] [CrossRef]
- Murphy, B.R.; Kasel, J.A.; Chanock, R.M. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N. Engl. J. Med. 1972, 286, 1329–1332. [Google Scholar] [CrossRef]
- Turner, J.S.; Zhou, J.Q.; Han, J.; Schmitz, A.J.; Rizk, A.A.; Alsoussi, W.B.; Lei, T.; Amor, M.; McIntire, K.M.; Meade, P.; et al. Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 2020, 586, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Jaimes, M.C.; Holmes, T.H.; Dekker, C.L.; Mahmood, K.; Kemble, G.W.; Arvin, A.M.; Greenberg, H.B. Comparison of the influenza virus-specific effector and memory B-cell responses to immunization of children and adults with live attenuated or inactivated influenza virus vaccines. J. Virol. 2007, 81, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Broberg, E.; Nicoll, A.; Amato-Gauci, A. Seroprevalence to influenza A (H1N1) 2009 virus—Where are we? Clin. Vaccine Immunol. 2011, 18, 1205–1212. [Google Scholar] [CrossRef]
Name | Origin of HA | Origin of NA |
---|---|---|
H6N1/13 | A/Herring Gull/Sarma/51c/2006 (H6N1) | A/South Africa/3626/2013(H1N1)pdm09 |
H6N2/14 | A/Herring Gull/Sarma/51c/2006 (H6N1) | A/HongKong/4801/2014 (H3N2) |
H6N1/19 | A/Herring Gull/Sarma/51c/2006 (H6N1) | A/Guangdong-Maonan/SWL 1536/2019(H1N1)pdm09 |
H6N2/18 | A/Herring Gull/Sarma/51c/2006 (H6N1) | A/Brisbane/34/2018 (H3N2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desheva, Y.; Sergeeva, M.; Kudar, P.; Rekstin, A.; Romanovskaya-Romanko, E.; Krivitskaya, V.; Kudria, K.; Bazhenova, E.; Stepanova, E.; Krylova, E.; et al. Neuraminidase Antibody Response to Homologous and Drifted Influenza A Viruses After Immunization with Seasonal Influenza Vaccines. Vaccines 2024, 12, 1334. https://doi.org/10.3390/vaccines12121334
Desheva Y, Sergeeva M, Kudar P, Rekstin A, Romanovskaya-Romanko E, Krivitskaya V, Kudria K, Bazhenova E, Stepanova E, Krylova E, et al. Neuraminidase Antibody Response to Homologous and Drifted Influenza A Viruses After Immunization with Seasonal Influenza Vaccines. Vaccines. 2024; 12(12):1334. https://doi.org/10.3390/vaccines12121334
Chicago/Turabian StyleDesheva, Yulia, Maria Sergeeva, Polina Kudar, Andrey Rekstin, Ekaterina Romanovskaya-Romanko, Vera Krivitskaya, Kira Kudria, Ekaterina Bazhenova, Ekaterina Stepanova, Evelina Krylova, and et al. 2024. "Neuraminidase Antibody Response to Homologous and Drifted Influenza A Viruses After Immunization with Seasonal Influenza Vaccines" Vaccines 12, no. 12: 1334. https://doi.org/10.3390/vaccines12121334
APA StyleDesheva, Y., Sergeeva, M., Kudar, P., Rekstin, A., Romanovskaya-Romanko, E., Krivitskaya, V., Kudria, K., Bazhenova, E., Stepanova, E., Krylova, E., Kurpiaeva, M., Lioznov, D., Stukova, M., & Kiseleva, I. (2024). Neuraminidase Antibody Response to Homologous and Drifted Influenza A Viruses After Immunization with Seasonal Influenza Vaccines. Vaccines, 12(12), 1334. https://doi.org/10.3390/vaccines12121334