Quantum-Ordering Ambiguities in Weak Chern—Simons 4D Gravity and Metastability of the Condensate-Induced Inflation
Abstract
:1. Introduction
2. Linear Axion Potential from Gravitational-Anomaly Condensates: A Brief Review
3. Effective (Mean-Field) Theory from “Re-Classicalization” and the Effect of the Number of GW Sources
4. Quantum-Ordering Ambiguities and Metastability of the gCS-Condensate-Induced Inflation
5. Periodic Modulations of the Axion Potential and Slow-Roll Inflationary Parameters
5.1. Target-Space Gauge Group Instantons and the KR Axion Potential
5.2. World-Sheet Instantons and Axions from String Compactification
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Well Defined Variational Principle in Gravitational Chern—Simons Theory
Appendix B. Graviton Propagation at Second Order in Perturbations and Two Scalar Modes in FLRW Spacetime
1 | The StRVM is based on massless fields of the closed sector of the underlying microscopic string theories [13,14], which is characterized by an Abelian gauge invariance of the spin-1 antisymmetric tensor (Kalb-Ramond (KR)) field (with denoting antisymmetry in the respective spacetime indices). Hence, the corresponding gravitational action of the StRVM depends only on the field strength of . In the framework of brane models [24,25,27], on the other hand, this symmetry might be broken, in which case there are other types of gravitational theories that depend explicitly on the B-field as well, which may also acquire a mass. Such models lead to more general cosmologies, with a rich and quite interesting structure, complementary in several aspects to that of StRVM, which have only recently started to be exploited [28]. |
2 | |
3 | It should be mentioned that RVM-type cosmologies arise quite naturally in quantum field theories, after integrating out massive matter modes in the path-integral, and appropriately subtracting the corresponding Ultra-Violet (UV) divergent vacuum contributions [15,16,17,18]. In such situations, the corresponding vacuum energy densities contain and (and higher order) terms, in contrast to our StRVM, where the highest power of the vacuum energy density is [1,3,5,6]. Nonetheless the metastable nature of the RVM vacuum energy is manifest in both approaches. |
4 | Our conventions and definitions used throughout this work are: signature of metric , Riemann Curvature tensor , Ricci tensor , and Ricci scalar . We also work in units . |
5 | For a rather detailed discussion on the well-definiteness of the variational principle in CS gravity we refer the reader to Appendix A. |
6 | The reader should note that, if the field b is a scalar, then the coupled axion-mixed-anomaly interaction term in the action (5) violates CP. Par contrast, the latter symmetry is preserved in the case of a pseudoscalar b field, which will be the focus of our interest here. |
7 | We cannot resist the temptation of noting at this point that in the action (5), the shift symmetry (11) implies that the corresponding Noether current is given by , which is thus covariantly conserved on account of the b field Euler-Lagrange field Equation (27). The presence of a gCS condensate, though, breaks this shift symmetry. Thus, although this implies a constant rate (30), nonetheless one does not encounter the case of Refs. [92,93] in which the exact shift symmetry of the Horndeski-like scalar field, , which exhibits a linear time dependence, leads to a primary hair for the corresponding stationary black hole solution, provided by the constant rate. |
8 | It is worthy of mentioning at this stage that the complex nature of the composite Hirzebruch operator (53) has been noted in passing in [89], but the authors attributed this behavior to the naive definition of the operator, implying that one should consider the hermitian conjugate so as to eliminate the imaginary parts. Par contrast, in our approach, as we shall discuss below, we attribute a non-trivial physical significance to the complex nature of (53), associated with the metastable nature of the quantum StRVM vacuum. |
9 | We remark for completion at this point that, in generic torsional Einstein-Cartan [81] or teleparallel theories [110,111,112] (including those with Nieh-Yan invariants [113]), there is a plethora of works addressing the observation of cosmological effects of torsion, e.g., on dark matter, via chiral GW [114,115], some of which might be detectable at current or future interferometers [116]. Our considerations in this work are different from those works, as they pertain to the effects of chiral GW on torsion-free CS anomaly condensates that lead to inflation. In this latter respect, as remarked in [6], the StRVM inflationary phenomenology is similar to the one proposed in [86,87,117] on inflationary birefringence induced by the gCS terms. Nonetheless, in view of the torsion interpretation of the antisymmetric tensor field strength , that characterises the underlying microscopic string theory, some of the methods of detection of the torsional effects mentioned in those references on Einstein-Cartan torsion [81] might also be applicable to our StRVM case. This will not be a topic discussed further here, but we may come back to it in the future. |
10 | We remark at this point that there exist similar examples of such quantum-ordering ambiguities in the framework of the Wheeler-de-Witt equation for the wave-function of the Universe [118,119,120]. For concreteness, we mention below two of them. One deals with a path-integral approach, in which these ambiguities can be related [121] to the choice of path-integral measure, and can be fixed, for instance, by requiring invariance under field redefinitions of the three (spatial components of the) metric and the lapse function. The other [122] studies the influence of the quantum ordering on the (non)existence of an initial singularity and the dark energy in the Universe, pointing to different scenarios of physical interest, according to the way of fixing the ambiguities. In our four-spacetime dimensional CS gravity case, a way of fixing the pertinent ordering ambiguities will be suggested below, based on the necessity of having a finite duration of the inflationary era, as suggested in the classical limit by the dynamical-system approach to the linear-axion inflation [6]. |
11 | The situation may be thought of as being somewhat analogous to that encountered in the Dirac Lagrangian for spin-1/2 fermions, which are also non-classical objects. The naively defined Lagrangian density is non-hermitian, with the imaginary parts being associated with the total divergence of the corresponding Noether current: . One can maintain hermiticity upon defining a particular ordering by replacing by the operator , with defined as: . In our case, the operator on the left-hand side of (85) is proportional to the four-divergence of the gCS topological current, and the symmetric ordering (86) may be thought of as corresponding to the specific ordering that renders the operators in (83) and (84) hermitian. |
12 | Notice that our arguments below on estimating the life time of the inflationary vacuum are based on the study of the path-integral partition function of GW perturbations in the case of a single source of GW. This suffices, because, as we discussed above, the case of sources can be studied by simply raising the partition function of a single source to the N-th power, (44), . Hence all the necessary information is encoded in a single-source GW path integral. |
13 | The situation is somewhat analogous to the celebrated Vafa-Witten theorem on the impossibility of the spontaneous breaking of Parity in vector-like theories [123,124], which is based on similar energetics arguments. Nonetheless, in our case, the presence of imaginary parts of the gCS condensate is not interpreted as implying that the formation of the condensate is not possible, but rather that, once it is formed via GW, quantum effects destabilize it, thereby causing the RVM-inflationary vacuum to decay, with a life time determined by these imaginary parts. |
14 | Representing the decaying vacuum of the StRVM as an open system is a concept familiar from the theory of decaying particles with a finite width, which are represented as open quantum mechanical Lindblad systems [131,132]. There, the environment, which the unstable particle interacts with, is provided by enlarging the original Hilbert space by states representing the decay products. In the StRVM, as we have mentioned, the environment consists of the entire spectrum of the massive string states. |
15 | |
16 | Notice that with the + sign choice of the cosine term in the potential, there is no mass term generated for the axion b during the inflationary phase. In StRVM such masses could be generated at post-inflationary eras, e.g., during the QCD epoch, as a result of the anomalous coupling of the b field to the Pontryagin term involving the gluon-field strengths [2]. |
17 | The pertinent equations of motion are therefore affected only very mildly by the presence of the shift-symmetry breaking periodic modulations of the axion potential, and thus the main qualitative features of the StRVM inflation, discussed previously in the literature [1,3,5,6], and reviewed here, including the non-dilution of the KR field at the end of inflation, remain intact. A detailed, quantitative, discussion on the rôle of the potential (117) within the dynamical system approach, in the spirit of [6], will be presented in a future publication. |
18 | We stress once again that in our model, the cosmic time dependence of the axion field b is suppressed during the entire duration of inflation, due to the order of magnitude of the initial value (109). Otherwise, the parameters would exhibit appreciable oscillatory behavior with time. |
19 | |
20 | Here is dimensionless, and the perturbative expansion is in powers of the weak field . This is to be contrasted with a coupling-constant() expansion in which one considers , where has dimensions of mass. |
21 | |
22 | Notice that covariant derivatives are reduced to partial derivatives upon the application of Dirichlet boundary conditions. |
23 | Suppose that is a vector. Then, we can decompose, |
24 | The reader’s attention is called to the different conventions between our work and that of [158], especially the definition of the Ricci tensor. |
25 | In order to clarify that the conditions and consist of 4 independent conditions, observe that these two conditions are linearly dependent. When this dependence is taken into account there are 4 independent conditions, which read; and . |
References
- Basilakos, S.; Mavromatos, N.E.; Solà Peracaula, J. Gravitational and Chiral Anomalies in the Running Vacuum Universe and Matter-Antimatter Asymmetry. Phys. Rev. D 2020, 101, 045001. [Google Scholar] [CrossRef]
- Basilakos, S.; Mavromatos, N.E.; Solà Peracaula, J. Quantum Anomalies in String-Inspired Running Vacuum Universe: Inflation and Axion Dark Matter. Phys. Lett. B 2020, 803, 135342. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Solà Peracaula, J. Stringy-running-vacuum-model inflation: From primordial gravitational waves and stiff axion matter to dynamical dark energy. Eur. Phys. J. ST 2021, 230, 2077–2110. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Solà Peracaula, J. Inflationary physics and trans-Planckian conjecture in the stringy running vacuum model: From the phantom vacuum to the true vacuum. Eur. Phys. J. Plus 2021, 136, 1152. [Google Scholar] [CrossRef]
- Mavromatos, N.E. Lorentz Symmetry Violation in String-Inspired Effective Modified Gravity Theories. Lect. Notes Phys. 2023, 1017, 3–48. [Google Scholar] [CrossRef]
- Dorlis, P.; Mavromatos, N.E.; Vlachos, S.N. Condensate-induced inflation from primordial gravitational waves in string-inspired Chern-Simons gravity. Phys. Rev. D 2024, 110, 063512. [Google Scholar] [CrossRef]
- Gomez-Valent, A.; Solà Peracaula, J. Phantom Matter: A Challenging Solution to the Cosmological Tensions. Astrophys. J. 2024, 975, 64. [Google Scholar] [CrossRef]
- Shapiro, I.L.; Sola, J. Scaling behavior of the cosmological constant: Interface between quantum field theory and cosmology. J. High Energy Phys. 2002, 02, 006. [Google Scholar] [CrossRef]
- Sola Peracaula, J. The cosmological constant problem and running vacuum in the expanding universe. Phil. Trans. Roy. Soc. Lond. A 2022, 380, 20210182. [Google Scholar] [CrossRef] [PubMed]
- Solà, J.; Gómez-Valent, A. The CDM cosmology: From inflation to dark energy through running Λ. Int. J. Mod. Phys. D 2015, 24, 1541003. [Google Scholar] [CrossRef]
- Solà, J.; Gómez-Valent, A.; de Cruz Pérez, J. First evidence of running cosmic vacuum: Challenging the concordance model. Astrophys. J. 2017, 836, 43. [Google Scholar] [CrossRef]
- Solà Peracaula, J. Composite running vacuum in the Universe: Implications on the cosmological tensions. arXiv 2024, arXiv:2410.20382. [Google Scholar]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory Vol. 1: 25th Anniversary Edition; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory Vol. 2: 25th Anniversary Edition; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Moreno-Pulido, C.; Sola, J. Running vacuum in quantum field theory in curved spacetime: Renormalizing ρvac without ∼m4 terms. Eur. Phys. J. C 2020, 80, 692. [Google Scholar] [CrossRef]
- Moreno-Pulido, C.; Sola Peracaula, J. Renormalizing the vacuum energy in cosmological spacetime: Implications for the cosmological constant problem. Eur. Phys. J. C 2022, 82, 551. [Google Scholar] [CrossRef]
- Moreno-Pulido, C.; Sola Peracaula, J. Equation of state of the running vacuum. Eur. Phys. J. C 2022, 82, 1137. [Google Scholar] [CrossRef]
- Moreno-Pulido, C.; Sola Peracaula, J.; Cheraghchi, S. Running vacuum in QFT in FLRW spacetime: The dynamics of ρvac(H) from the quantized matter fields. Eur. Phys. J. C 2023, 83, 637. [Google Scholar] [CrossRef]
- Solà Peracaula, J.; Gómez-Valent, A.; de Cruz Perez, J.; Moreno-Pulido, C. Running vacuum against the H0 and σ8 tensions. EPL 2021, 134, 19001. [Google Scholar] [CrossRef]
- Gómez-Valent, A.; Mavromatos, N.E.; Solà Peracaula, J. Stringy running vacuum model and current tensions in cosmology. Class. Quantum Gravity 2024, 41, 015026. [Google Scholar] [CrossRef]
- Lima, J.A.S.; Basilakos, S.; Sola, J. Expansion History with Decaying Vacuum: A Complete Cosmological Scenario. Mon. Not. Roy. Astron. Soc. 2013, 431, 923–929. [Google Scholar] [CrossRef]
- Lima, J.A.S.; Basilakos, S.; Solà, J. Thermodynamical aspects of running vacuum models. Eur. Phys. J. C 2016, 76, 228. [Google Scholar] [CrossRef]
- Solà Peracaula, J.; Yu, H. Particle and entropy production in the Running Vacuum Universe. Gen. Relativ. Gravit. 2020, 52, 17. [Google Scholar] [CrossRef]
- Polchinski, J. String Theory. Vol. 1: An Introduction to the Bosonic String; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Polchinski, J. String Theory. Vol. 2: Superstring Theory and Beyond; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Duncan, M.J.; Kaloper, N.; Olive, K.A. Axion hair and dynamical torsion from anomalies. Nucl. Phys. B 1992, 387, 215–235. [Google Scholar] [CrossRef]
- Polchinski, J. Tasi lectures on D-branes. In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality, Boulder, CO, USA, 2–28 June 1996; pp. 293–356. [Google Scholar]
- Capanelli, C.; Jenks, L.; Kolb, E.W.; McDonough, E. Cosmological implications of Kalb-Ramond-like particles. J. High Energy Phys. 2024, 06, 075. [Google Scholar] [CrossRef]
- Antoniadis, I.; Bachas, C.; Ellis, J.R.; Nanopoulos, D.V. Cosmological String Theories and Discrete Inflation. Phys. Lett. B 1988, 211, 393–399. [Google Scholar] [CrossRef]
- Antoniadis, I.; Bachas, C.; Ellis, J.R.; Nanopoulos, D.V. An Expanding Universe in String Theory. Nucl. Phys. B 1989, 328, 117–139. [Google Scholar] [CrossRef]
- Antoniadis, I.; Bachas, C.; Ellis, J.R.; Nanopoulos, D.V. Comments on cosmological string solutions. Phys. Lett. B 1991, 257, 278–284. [Google Scholar] [CrossRef]
- Svrcek, P.; Witten, E. Axions In String Theory. J. High Energy Phys. 2006, 06, 051. [Google Scholar] [CrossRef]
- de Cesare, M.; Mavromatos, N.E.; Sarkar, S. On the possibility of tree-level leptogenesis from Kalb–Ramond torsion background. Eur. Phys. J. C 2015, 75, 514. [Google Scholar] [CrossRef] [PubMed]
- Bossingham, T.; Mavromatos, N.E.; Sarkar, S. Leptogenesis from Heavy Right-Handed Neutrinos in CPT Violating Backgrounds. Eur. Phys. J. C 2018, 78, 113. [Google Scholar] [CrossRef]
- Bossingham, T.; Mavromatos, N.E.; Sarkar, S. The role of temperature dependent string-inspired CPT violating backgrounds in leptogenesis and the chiral magnetic effect. Eur. Phys. J. C 2019, 79, 50. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Sarkar, S. Curvature and thermal corrections in tree-level CPT-Violating Leptogenesis. Eur. Phys. J. C 2020, 80, 558. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H. Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory. Phys. Lett. B 1984, 149, 117–122. [Google Scholar] [CrossRef]
- Manton, N.S. Topology in the Weinberg-Salam Theory. Phys. Rev. D 1983, 28, 2019. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Manton, N.S. A Saddle Point Solution in the Weinberg-Salam Theory. Phys. Rev. D 1984, 30, 2212. [Google Scholar] [CrossRef]
- Arnold, P.B.; McLerran, L.D. Sphalerons, Small Fluctuations and Baryon Number Violation in Electroweak Theory. Phys. Rev. D 1987, 36, 581. [Google Scholar] [CrossRef]
- Cline, J.M.; Kainulainen, K.; Olive, K.A. Protecting the primordial baryon asymmetry from erasure by sphalerons. Phys. Rev. D 1994, 49, 6394–6409. [Google Scholar] [CrossRef]
- Manton, N.S. The Inevitability of Sphalerons in Field Theory. Phil. Trans. Roy. Soc. Lond. A 2019, 377, 20180327. [Google Scholar] [CrossRef]
- Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 1985, 155, 36. [Google Scholar] [CrossRef]
- Gavela, M.B.; Lozano, M.; Orloff, J.; Pene, O. Standard model CP violation and baryon asymmetry. Part 1: Zero temperature. Nucl. Phys. B 1994, 430, 345–381. [Google Scholar] [CrossRef]
- Gavela, M.B.; Hernandez, P.; Orloff, J.; Pene, O.; Quimbay, C. Standard model CP violation and baryon asymmetry. Part 2: Finite temperature. Nucl. Phys. B 1994, 430, 382–426. [Google Scholar] [CrossRef]
- Rubakov, V.A.; Shaposhnikov, M.E. Electroweak baryon number nonconservation in the early universe and in high-energy collisions. Uspekhi Fiz. Nauk. 1996, 166, 493–537. [Google Scholar] [CrossRef]
- Jackiw, R.; Pi, S.Y. Chern-Simons modification of general relativity. Phys. Rev. D 2003, 68, 104012. [Google Scholar] [CrossRef]
- Alexander, S.; Yunes, N. Chern-Simons Modified General Relativity. Phys. Rep. 2009, 480, 1–55. [Google Scholar] [CrossRef]
- Gross, D.J.; Sloan, J.H. The Quartic Effective Action for the Heterotic String. Nucl. Phys. B 1987, 291, 41–89. [Google Scholar] [CrossRef]
- Metsaev, R.R.; Tseytlin, A.A. Order alpha-prime (Two Loop) Equivalence of the String Equations of Motion and the Sigma Model Weyl Invariance Conditions: Dependence on the Dilaton and the Antisymmetric Tensor. Nucl. Phys. B 1987, 293, 385–419. [Google Scholar] [CrossRef]
- McAllister, L.; Silverstein, E.; Westphal, A. Gravity Waves and Linear Inflation from Axion Monodromy. Phys. Rev. D 2010, 82, 046003. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Martin, J.; Ringeval, C.; Vennin, V. Encyclopædia Inflationaris. Phys. Dark Universe 2014, 5-6, 75–235. [Google Scholar] [CrossRef]
- Hehl, F.W.; Von Der Heyde, P.; Kerlick, G.D.; Nester, J.M. General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef]
- Shapiro, I.L. Physical aspects of the space-time torsion. Phys. Rep. 2002, 357, 113. [Google Scholar] [CrossRef]
- Mavromatos, N.E. Torsion in String-Inspired Cosmologies and the Universe Dark Sector. Universe 2021, 7, 480. [Google Scholar] [CrossRef]
- Barbero G., J. F. Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D 1995, 51, 5507–5510. [Google Scholar] [CrossRef] [PubMed]
- Immirzi, G. Real and complex connections for canonical gravity. Class. Quantum Gravity 1997, 14, L177–L181. [Google Scholar] [CrossRef]
- Ashtekar, A. New Variables for Classical and Quantum Gravity. Phys. Rev. Lett. 1986, 57, 2244–2247. [Google Scholar] [CrossRef] [PubMed]
- Ashtekar, A. New Hamiltonian Formulation of General Relativity. Phys. Rev. D 1987, 36, 1587–1602. [Google Scholar] [CrossRef] [PubMed]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A Status report. Class. Quantum Gravity 2004, 21, R53. [Google Scholar] [CrossRef]
- Taveras, V.; Yunes, N. The Barbero-Immirzi Parameter as a Scalar Field: K-Inflation from Loop Quantum Gravity? Phys. Rev. D 2008, 78, 064070. [Google Scholar] [CrossRef]
- Calcagni, G.; Mercuri, S. The Barbero-Immirzi field in canonical formalism of pure gravity. Phys. Rev. D 2009, 79, 084004. [Google Scholar] [CrossRef]
- Mercuri, S.; Taveras, V. Interaction of the Barbero-Immirzi Field with Matter and Pseudo-Scalar Perturbations. Phys. Rev. D 2009, 80, 104007. [Google Scholar] [CrossRef]
- Lattanzi, M.; Mercuri, S. A solution of the strong CP problem via the Peccei-Quinn mechanism through the Nieh-Yan modified gravity and cosmological implications. Phys. Rev. D 2010, 81, 125015. [Google Scholar] [CrossRef]
- Mercuri, S.; Randono, A. The Immirzi Parameter as an Instanton Angle. Class. Quantum Gravity 2011, 28, 025001. [Google Scholar] [CrossRef]
- Nieh, H.T.; Yan, M.L. An Identity in Riemann-cartan Geometry. J. Math. Phys. 1982, 23, 373. [Google Scholar] [CrossRef]
- Nieh, H.T.; Yang, C.N. A torsional topological invariant. Int. J. Mod. Phys. A 2007, 22, 5237–5244. [Google Scholar] [CrossRef]
- Nieh, H.T. Torsional Topological Invariants. Phys. Rev. D 2018, 98, 104045. [Google Scholar] [CrossRef]
- Chandia, O.; Zanelli, J. Topological invariants, instantons and chiral anomaly on spaces with torsion. Phys. Rev. D 1997, 55, 7580. [Google Scholar] [CrossRef]
- Banerjee, K. Some Aspects of Holst and Nieh-Yan Terms in General Relativity with Torsion. Class. Quantum Gravity 2010, 27, 135012. [Google Scholar] [CrossRef]
- Holst, S. Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D 1996, 53, 5966–5969. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, S. Fermions in Ashtekar-Barbero connections formalism for arbitrary values of the Immirzi parameter. Phys. Rev. D 2006, 73, 084016. [Google Scholar] [CrossRef]
- Mercuri, S. From the Einstein-Cartan to the Ashtekar-Barbero canonical constraints, passing through the Nieh-Yan functional. Phys. Rev. D 2008, 77, 024036. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion Cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Garcia de Andrade, L.C. Primordial magnetic fields and dynamos from parity violated torsion. Phys. Lett. B 2012, 711, 143–146. [Google Scholar] [CrossRef]
- Garcia de Andrade, L.C. Chiral dynamos and magnetogenesis induced by torsionful Maxwell–Chern Simons electrodynamics. Eur. Phys. J. C 2018, 78, 254. [Google Scholar] [CrossRef]
- Garcia de Andrade, L.C. Generation of Primordial Magnetic Fields from QED and Higgs-like Domain Walls in Einstein–Cartan Gravity. Universe 2022, 8, 658. [Google Scholar] [CrossRef]
- Garcia de Andrade, L.C. Galactic dynamo seeds and black hole singularities driven by Einstein–Cartan QCD walls. Ann. Phys. 2022, 440, 168816. [Google Scholar] [CrossRef]
- Cartan, E. Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie). Ann. Sci. l’École Norm. Super. 1923, 40, 325–412. [Google Scholar] [CrossRef]
- Gao, Z.F.; de Andrade, L.C.G. Axion-photon-mixing dark matter conversion mediated by torsion mass constrained by the Barbero-Immirzi parameter. arXiv 2024, arXiv:2412.05982. [Google Scholar]
- Mavromatos, N.E. Do we owe our existence to a Gravitational Anomaly? In Proceedings of the 11th International Workshop on Decoherence, Information, Complexity and Entropy: Spacetime-Matter-Quantum Mechanics, Castiglioncello, Italy, 16–20 September 2024. [Google Scholar]
- Alvarez-Gaume, L.; Witten, E. Gravitational Anomalies. Nucl. Phys. B 1984, 234, 269. [Google Scholar] [CrossRef]
- Eguchi, T.; Gilkey, P.B.; Hanson, A.J. Gravitation, Gauge Theories and Differential Geometry. Phys. Rep. 1980, 66, 213. [Google Scholar] [CrossRef]
- Lue, A.; Wang, L.M.; Kamionkowski, M. Cosmological signature of new parity violating interactions. Phys. Rev. Lett. 1999, 83, 1506–1509. [Google Scholar] [CrossRef]
- Alexander, S.; Martin, J. Birefringent gravitational waves and the consistency check of inflation. Phys. Rev. D 2005, 71, 063526. [Google Scholar] [CrossRef]
- Alexander, S.H.S.; Peskin, M.E.; Sheikh-Jabbari, M.M. Leptogenesis from gravity waves in models of inflation. Phys. Rev. Lett. 2006, 96, 081301. [Google Scholar] [CrossRef]
- Lyth, D.H.; Quimbay, C.; Rodriguez, Y. Leptogenesis and tensor polarisation from a gravitational Chern-Simons term. J. High Energy Phys. 2005, 03, 016. [Google Scholar] [CrossRef]
- Bedroya, A.; Brandenberger, R.; Loverde, M.; Vafa, C. Trans-Planckian Censorship and Inflationary Cosmology. Phys. Rev. D 2020, 101, 103502. [Google Scholar] [CrossRef]
- Bedroya, A.; Vafa, C. Trans-Planckian Censorship and the Swampland. J. High Energy Phys. 2020, 09, 123. [Google Scholar] [CrossRef]
- Bakopoulos, A.; Charmousis, C.; Kanti, P.; Lecoeur, N.; Nakas, T. Black holes with primary scalar hair. Phys. Rev. D 2024, 109, 024032. [Google Scholar] [CrossRef]
- Bakopoulos, A.; Chatzifotis, N.; Nakas, T. Compact objects with primary hair in shift and parity symmetric beyond Horndeski gravities. Phys. Rev. D 2024, 110, 024044. [Google Scholar] [CrossRef]
- Batalin, I.A.; Vilkovisky, G.A. Gauge Algebra and Quantization. Phys. Lett. B 1981, 102, 27–31. [Google Scholar] [CrossRef]
- Batalin, I.A.; Vilkovisky, G.A. Quantization of Gauge Theories with Linearly Dependent Generators. Phys. Rev. D 1983, 28, 2567–2582, Erratum in Phys. Rev. D 1984, 30, 508. [Google Scholar] [CrossRef]
- Barnich, G.; Brandt, F.; Henneaux, M. Local BRST cohomology in gauge theories. Phys. Rep. 2000, 338, 439–569. [Google Scholar] [CrossRef]
- Hartree, D.R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Math. Proc. Camb. Philos. Soc. 1928, 24, 111. [Google Scholar] [CrossRef]
- Slater, J.C. Note on Hartree’s Method. Phys. Rev. 1930, 35, 210–211. [Google Scholar] [CrossRef]
- Fock, V.A. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 1930, 61, 126–148. (In German) [Google Scholar] [CrossRef]
- Grassi, P.A.; Hulik, O. BV Formalism and Partition Functions. arXiv 2024, arXiv:2410.18285. [Google Scholar]
- Ooguri, H.; Vafa, C. On the Geometry of the String Landscape and the Swampland. Nucl. Phys. B 2007, 766, 21–33. [Google Scholar] [CrossRef]
- Ooguri, H.; Palti, E.; Shiu, G.; Vafa, C. Distance and de Sitter Conjectures on the Swampland. Phys. Lett. B 2019, 788, 180–184. [Google Scholar] [CrossRef]
- Palti, E. The Swampland: Introduction and Review. Fortschritte Phys. 2019, 67, 1900037. [Google Scholar] [CrossRef]
- Garg, S.K.; Krishnan, C. Bounds on Slow Roll and the de Sitter Swampland. J. High Energy Phys. 2019, 11, 075. [Google Scholar] [CrossRef]
- Agmon, N.B.; Bedroya, A.; Kang, M.J.; Vafa, C. Lectures on the string landscape and the Swampland. arXiv 2022, arXiv:2212.06187. [Google Scholar]
- Mavromatos, N.E.; Solà Peracaula, J.; Basilakos, S. String-Inspired Running Vacuum—The “Vacuumon”—And the Swampland Criteria. Universe 2020, 6, 218. [Google Scholar] [CrossRef]
- Ford, L.H.; Parker, L. Quantized Gravitational Wave Perturbations in Robertson-Walker Universes. Phys. Rev. D 1977, 16, 1601–1608. [Google Scholar] [CrossRef]
- Creque-Sarbinowski, C.; Alexander, S.; Kamionkowski, M.; Philcox, O. Parity-violating trispectrum from Chern-Simons gravity. J. Cosmol. Astropart. Phys. 2023, 11, 029. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed]
- Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Levi Said, J.; Mifsud, J.; Di Valentino, E. Teleparallel gravity: From theory to cosmology. Rep. Prog. Phys. 2023, 86, 026901. [Google Scholar] [CrossRef]
- Rao, H.; Liu, C.; Geng, C.Q. Gravitational wave in symmetric teleparallel gravity with different connections. Phys. Lett. B 2024, 850, 138497. [Google Scholar] [CrossRef]
- Izaurieta, F.; Lepe, S. Cosmological Dark Matter Amplification through Dark Torsion. Class. Quantum Gravity 2020, 37, 205004. [Google Scholar] [CrossRef]
- Elizalde, E.; Izaurieta, F.; Riveros, C.; Salgado, G.; Valdivia, O. Gravitational waves in Einstein–Cartan theory: On the effects of dark matter spin tensor. Phys. Dark Universe 2023, 40, 101197. [Google Scholar] [CrossRef]
- de Andrade, L.C.G. Searching for dark torsion signatures at LIGO in Nieh–Yan teleparallel chiral gravitational waves and Chern–Simons invariants. Eur. Phys. J. C 2024, 84, 1290. [Google Scholar] [CrossRef]
- Alexander, S.H.S. Inflationary Birefringence and Baryogenesis. Int. J. Mod. Phys. D 2016, 25, 1640013. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. 1. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148. [Google Scholar] [CrossRef]
- Wheeler, J.A. Battelle Rencontres—1967 Lectures in Mathematics and Physics: Seattle, WA, USA, 16–31 July 1967; W. A. Benjamin: New York, NY, USA, 1968. [Google Scholar]
- Kiefer, C. Conceptual Problems in Quantum Gravity and Quantum Cosmology. ISRN Math. Phys. 2013, 2013, 509316. [Google Scholar] [CrossRef]
- Halliwell, J.J. Derivation of the Wheeler-De Witt Equation from a Path Integral for Minisuperspace Models. Phys. Rev. D 1988, 38, 2468. [Google Scholar] [CrossRef]
- Muniz, C.R.; Christiansen, H.R.; Cunha, M.S.; Vieira, H.S. Exact solutions of the Wheeler–DeWitt equation with ordering term in a dark energy scenario. Phys. Dark Universe 2020, 28, 100547. [Google Scholar] [CrossRef]
- Vafa, C.; Witten, E. Eigenvalue Inequalities for Fermions in Gauge Theories. Commun. Math. Phys. 1984, 95, 257. [Google Scholar] [CrossRef]
- Vafa, C.; Witten, E. Parity Conservation in QCD. Phys. Rev. Lett. 1984, 53, 535. [Google Scholar] [CrossRef]
- Akhmedov, E.T.; Diakonov, D.V.; Schubert, C. Complex effective actions and gravitational pair creation. arXiv 2024, arXiv:2407.06601. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real spectra in nonHermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef]
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947. [Google Scholar] [CrossRef]
- Mannheim, P.D. Antilinearity Rather than Hermiticity as a Guiding Principle for Quantum Theory. J. Phys. A 2018, 51, 315302. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Sarkar, S. Chern-Simons gravity and PT symmetry. Phys. Rev. D 2024, 110, 045004. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Dorlis, P.; Vlachos, S.N. Torsion-induced axions in string theory, quantum gravity and the cosmological tensions. arXiv 2024, arXiv:2404.18741. [Google Scholar]
- Bertlmann, R.A.; Grimus, W.; Hiesmayr, B.C. An Open-quantum-system formulation of particle decay. Phys. Rev. A 2006, 73, 054101. [Google Scholar] [CrossRef]
- Bernabeu, J.; Mavromatos, N.E.; Villanueva-Perez, P. Consistent Probabilistic Description of the Neutral Kaon System: Novel Observable Effects. Phys. Lett. B 2013, 724, 269–273. [Google Scholar] [CrossRef]
- Alexander, S.; Herczeg, G.; Freidel, L. An inner product for 4D quantum gravity and the Chern–Simons–Kodama state. Class. Quantum Gravity 2023, 40, 145010. [Google Scholar] [CrossRef]
- Kodama, H. Holomorphic Wave Function of the Universe. Phys. Rev. D 1990, 42, 2548–2565. [Google Scholar] [CrossRef] [PubMed]
- Caban, P.; Rembielinski, J.; Smolinski, K.A.; Walczak, Z. Unstable particles as open quantum systems. Phys. Rev. A 2005, 72, 032106. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Tseytlin, A.A. One Loop Effective Potential in Gauged O(4) Supergravity. Nucl. Phys. B 1984, 234, 472. [Google Scholar] [CrossRef]
- Di Marco, A.D.; Orazi, E.; Pradisi, G. Introduction to the Number of e-Folds in Slow-Roll Inflation. Universe 2024, 10, 284. [Google Scholar] [CrossRef]
- Leach, S.M.; Liddle, A.R.; Martin, J.; Schwarz, D.J. Cosmological parameter estimation and the inflationary cosmology. Phys. Rev. D 2002, 66, 023515. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, J.; Cai, Y.F.; Sasaki, M.; Pi, S. Primordial black holes and gravitational waves from resonant amplification during inflation. Phys. Rev. D 2020, 102, 103527. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Spanos, V.C.; Stamou, I.D. Primordial black holes and gravitational waves in multiaxion-Chern-Simons inflation. Phys. Rev. D 2022, 106, 063532. [Google Scholar] [CrossRef]
- Coleman, S.R. The Uses of Instantons. Subnucl. Ser. 1979, 15, 805. [Google Scholar]
- Diakonov, D. Instantons at work. Prog. Part. Nucl. Phys. 2003, 51, 173–222. [Google Scholar] [CrossRef]
- Tong, D. TASI lectures on solitons: Instantons, monopoles, vortices and kinks. In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Many Dimensions of String Theory, Boulder, CO, USA, 5 June–1 July 2005. [Google Scholar]
- Blumenhagen, R.; Cvetic, M.; Langacker, P.; Shiu, G. Toward realistic intersecting D-brane models. Ann. Rev. Nucl. Part. Sci. 2005, 55, 71–139. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Cvetic, M.; Weigand, T. Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-Brane models. Nucl. Phys. B 2007, 771, 113–142. [Google Scholar] [CrossRef]
- Blumenhagen, R.; Cvetic, M.; Kachru, S.; Weigand, T. D-Brane Instantons in Type II Orientifolds. Ann. Rev. Nucl. Part. Sci. 2009, 59, 269–296. [Google Scholar] [CrossRef]
- Carr, B.; Dimopoulos, K.; Owen, C.; Tenkanen, T. Primordial Black Hole Formation During Slow Reheating After Inflation. Phys. Rev. D 2018, 97, 123535. [Google Scholar] [CrossRef]
- Papanikolaou, T.; Tzerefos, C.; Basilakos, S.; Saridakis, E.N.; Mavromatos, N.E. Revisiting string-inspired running-vacuum models under the lens of light primordial black holes. Phys. Rev. D 2024, 110, 024055. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecky, V.A. Lorentz violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11–31. [Google Scholar] [CrossRef]
- Basilakos, S.; Nanopoulos, D.V.; Papanikolaou, T.; Saridakis, E.N.; Tzerefos, C. Observable Signatures of No-Scale Supergravity in NANOGrav. arXiv 2024, arXiv:2409.02936. [Google Scholar] [CrossRef]
- Basilakos, S.; Nanopoulos, D.V.; Papanikolaou, T.; Saridakis, E.N.; Tzerefos, C. Induced gravitational waves from flipped SU(5) superstring theory at nHz. Phys. Lett. B 2024, 849, 138446. [Google Scholar] [CrossRef]
- Basilakos, S.; Nanopoulos, D.V.; Papanikolaou, T.; Saridakis, E.N.; Tzerefos, C. Gravitational wave signatures of no-scale supergravity in NANOGrav and beyond. Phys. Lett. B 2024, 850, 138507. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blecha, L.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Baker, P.T.; Bécsy, B.; Blecha, L.; Bonilla, A.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
- Papagiannopoulos, G.; Tsiapi, P.; Basilakos, S.; Paliathanasis, A. Dynamics and cosmological evolution in Λ-varying cosmology. Eur. Phys. J. C 2020, 80, 55. [Google Scholar] [CrossRef]
- Tsiapi, P.; Basilakos, S. Testing dynamical vacuum models with CMB power spectrum from Planck. Mon. Not. Roy. Astron. Soc. 2019, 485, 2505–2510. [Google Scholar] [CrossRef]
- ’t Hooft, G.; Veltman, M.J.G. One loop divergencies in the theory of gravitation. Ann. Inst. Henri Poincare A Phys. Theor. 1974, 20, 69–94. [Google Scholar]
- Christensen, S.M.; Duff, M.J. Quantizing Gravity with a Cosmological Constant. Nucl. Phys. B 1980, 170, 480–506. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Action Integrals and Partition Functions in Quantum Gravity. Phys. Rev. D 1977, 15, 2752–2756. [Google Scholar] [CrossRef]
- Grumiller, D.; Mann, R.B.; McNees, R. Dirichlet boundary value problem for Chern-Simons modified gravity. Phys. Rev. D 2008, 78, 081502. [Google Scholar] [CrossRef]
- Grumiller, D.; Sheikh-Jabbari, M.M. Black Hole Physics: From Collapse to Evaporation; Graduate Texts in Physics; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Fanizza, G.; Gasperini, M.; Pavone, E.; Tedesco, L. Linearized propagation equations for metric fluctuations in a general (non-vacuum) background geometry. J. Cosmol. Astropart. Phys. 2021, 07, 021. [Google Scholar] [CrossRef]
- Dodelson, S. Modern Cosmology; Academic Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorlis, P.; Mavromatos, N.E.; Vlachos, S.-N. Quantum-Ordering Ambiguities in Weak Chern—Simons 4D Gravity and Metastability of the Condensate-Induced Inflation. Universe 2025, 11, 15. https://doi.org/10.3390/universe11010015
Dorlis P, Mavromatos NE, Vlachos S-N. Quantum-Ordering Ambiguities in Weak Chern—Simons 4D Gravity and Metastability of the Condensate-Induced Inflation. Universe. 2025; 11(1):15. https://doi.org/10.3390/universe11010015
Chicago/Turabian StyleDorlis, Panagiotis, Nick E. Mavromatos, and Sotirios-Neilos Vlachos. 2025. "Quantum-Ordering Ambiguities in Weak Chern—Simons 4D Gravity and Metastability of the Condensate-Induced Inflation" Universe 11, no. 1: 15. https://doi.org/10.3390/universe11010015
APA StyleDorlis, P., Mavromatos, N. E., & Vlachos, S.-N. (2025). Quantum-Ordering Ambiguities in Weak Chern—Simons 4D Gravity and Metastability of the Condensate-Induced Inflation. Universe, 11(1), 15. https://doi.org/10.3390/universe11010015