Introduction to Thermal Field Theory: From First Principles to Applications
<p>A contour <italic>C</italic> which allows us to compute the thermal Green’s function directly at real times. Here, <inline-formula><mml:math id="mm1567"><mml:semantics><mml:mrow><mml:msub><mml:mi>t</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>t</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>→</mml:mo><mml:mo>−</mml:mo><mml:mo>∞</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 2
<p>The diagram corresponding to the non-time-ordered self-energy of the weakly coupled particle. The external vertex on the left is circled, the external vertex on the right is uncircled, and one sums over all possible ways of circling the internal vertices.</p> "> Figure 3
<p><bold>Left</bold>: The temperature-dependent effective potential built around the Coleman–Weinberg potential (azure solid line). This effective potential features a first-order phase transition. <bold>Right</bold>: The temperature-dependent effective potential of Equation (<xref ref-type="disp-formula" rid="FD362-universe-11-00016">362</xref>), which features a second-order phase transition. Here, <inline-formula><mml:math id="mm1568"><mml:semantics><mml:mrow><mml:mi>B</mml:mi><mml:mo>=</mml:mo><mml:mi>λ</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 4
<p>Bounces at various temperatures. The vertical and horizontal axis represent the Euclidean time direction and the spatial radius, respectively. At <inline-formula><mml:math id="mm1569"><mml:semantics><mml:mrow><mml:mi>T</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> (left-most panel), the bounce solution represents a bubble. At finite temperature, the bounce solution becomes a series of bubbles placed at distance <inline-formula><mml:math id="mm1570"><mml:semantics><mml:mi>β</mml:mi></mml:semantics></mml:math></inline-formula> in the time direction. At large temperature (right-most panel), the bounce no longer depends on time. Figure reproduced from [<xref ref-type="bibr" rid="B63-universe-11-00016">63</xref>].</p> ">
Abstract
:1. Introduction
2. Density Matrix and Ensemble Averages
3. Thermal Free Fields
3.1. Real Scalar Field
3.2. Gauge Field
3.3. Fermion Field
4. Thermal Green’s Functions
4.1. Scalar Theory
4.1.1. Path Integral
4.1.2. Cutting Rules at Finite Temperature
- Reverse the sign of the vertex if it is underlined.
- If in two vertices and are linked by , then in F perform the following:
- Use if neither nor are underlined;
- Use if is underlined but is not;
- Use if is underlined but is not;
- Use the complex conjugate if both and are underlined.
4.2. Fermions
4.2.1. Fermionic Path Integral
4.2.2. Perturbation Theory in Fermion–Scalar Theories
4.3. Gauge Theory
5. Weakly Coupled Particle Production
5.1. Production of a Spin-0 Particle
5.2. Production of a Massless Spin-1 Particle
5.3. Production of a Spin-1/2 Particle
5.4. Fermion Pair Production
6. Phase Transitions in Field Theory
6.1. Effective Scalar Action
- We can add a propagator and no new vertices: this is the case when the loop is obtained by joining together two existing vertices through a new propagator.
- We can add one new vertex and two propagators: this is the case when we join together one existing vertex with a new vertex through a new propagator.
- We can add two new vertices and three new propagators: this is the case when we join together two new vertices with a new propagator.
6.2. Effective Potential
6.2.1. Fermion One-Loop Effective Potential
- and are two-component spinors. Spinors on the left have upper spinor indices, , , while spinors on the right have lower spinor indices, , , , and , where and are the antisymmetric symbols with and such that .
- The kinetic term is now constructed with the matrices (where in Euclidean spacetime, , and represents the three Pauli matrices) asNeglecting boundary terms
- Finally,
6.2.2. Gauge One-Loop Effective Potential
6.2.3. Scalar One-Loop Effective Potential
6.2.4. Full One-Loop Effective Potential
6.3. First-Order Phase Transitions
6.4. Second-Order Phase Transitions
6.5. Thermal Vacuum Decay in First-Order Phase Transitions
7. Summary and Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
- Dirac’s notation is used to denote states.
- Repeated indices understand a summation (unless otherwise stated).
- Latin letters denote space indices, while Greek letters denote spacetime indices. A label 0 indicates the time component of a four-vector.
- A spatial three-vector is written with an arrow on top, e.g., for the spatial coordinates.
- is the totally antisymmetric Levi–Civita symbol (with ).
- The convention for the spacetime metric is diag. Its components are used as usual to lower and raise the spacetime indices.
- We use natural units where the speed of light c, the reduced Planck constant ħ and the Boltzmann constant are all equal to one, unless otherwise stated.
- : Hermitian conjugate of the generic linear operator O.
- : complex conjugate of the generic matrix A.
- : transpose of A.
- : Hermitian conjugate of A.
- : commutator of two generic operators e .
- : anticommutator of two generic operators e .
References
- Matsubara, T. A New approach to quantum statistical mechanics. Prog. Theor. Phys. 1955, 14, 351–378. [Google Scholar] [CrossRef]
- Fradkin, E.S. Method of Green’s functions in quantum field theory and quantum statistics. Trud. Fiz. Inst. Akad. Nauk SSSR (Fiz. Inst. Lebedev) 1965, 29, 7–138. [Google Scholar]
- Aarts, G.; Aichelin, J.; Allton, C.; Athenodorou, A.; Bachtis, D.; Bonanno, C.; Brambilla, N.; Bratkovskaya, E.; Bruno, M.; Caselle, M.; et al. Phase Transitions in Particle Physics: Results and Perspectives from Lattice Quantum Chromo-Dynamics. Prog. Part. Nucl. Phys. 2023, 133, 104070. [Google Scholar] [CrossRef]
- Quiros, M. Field theory at finite temperature and phase transitions. Helv. Phys. Acta 1994, 67, 451–583. [Google Scholar]
- Bellac, M.L. Thermal Field Theory; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Nair, V.P. Quantum Field Theory: A Modern Perspective; Springer: New York, NY, USA, 2005. [Google Scholar]
- Landsman, N.P.; van Weert, C.G. Real and Imaginary Time Field Theory at Finite Temperature and Density. Phys. Rep. 1987, 145, 141. [Google Scholar] [CrossRef]
- Das, A. Finite Temperature Field Theory; World Scientific Publishing Co. Pte. Lid.: Singapore, 1997. [Google Scholar]
- Laine, M.; Vuorinen, A. Basics of Thermal Field Theory; Lecture Notes in Physics; Springer: Cham, Switzerland, 2016; Volume 925, pp. 1–281. [Google Scholar]
- Ghiglieri, J.; Kurkela, A.; Strickland, M.; Vuorinen, A. Perturbative Thermal QCD: Formalism and Applications. Phys. Rep. 2020, 880, 1–73. [Google Scholar] [CrossRef]
- Caron-Huot, S. Heavy Quark Energy Losses in the Quark-Gluon Plasma: Beyond Leading Order. Master’s Thesis, McGill University, Montréal, QC, Canada, 2007. [Google Scholar]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. [Google Scholar] [CrossRef]
- Martin, P.C.; Schwinger, J. Theory of Many-Particle Systems. I. Phys. Rev. 1959, 115, 1342. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields; Volume 1: Foundations; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Matsumoto, H.; Nakano, Y.; Umezawa, H.; Mancini, F.; Marinaro, M. Thermo Field Dynamics in Interaction Representation. Prog. Theor. Phys. 1983, 70, 599–602. [Google Scholar] [CrossRef]
- Niemi, A.J.; Semenoff, G.W. Finite Temperature Quantum Field Theory in Minkowski Space. Ann. Phys. 1984, 152, 105. [Google Scholar] [CrossRef]
- Keldish, L.V. Diagram technique for nonequilibrium processes. Sov. Phys. JETP 1964, 20, 1018. [Google Scholar]
- Kobes, R.L.; Semenoff, G.W. Discontinuities of Green Functions in Field Theory at Finite Temperature and Density. Nucl. Phys. B 1985, 260, 714–746. [Google Scholar] [CrossRef]
- Kobes, R.L.; Semenoff, G.W. Discontinuities of Green Functions in Field Theory at Finite Temperature and Density. 2. Nucl. Phys. B 1986, 272, 329–364. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields; Volume 2: Modern Applications; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hardy, E.; Sokolov, A.; Stubbs, H. Supernova bounds on new scalars from resonant and soft emission. arXiv 2024, arXiv:2410.17347. [Google Scholar]
- Graf, P.; Steffen, F.D. Thermal axion production in the primordial quark-gluon plasma. Phys. Rev. D 2011, 83, 075011. [Google Scholar] [CrossRef]
- Salvio, A.; Strumia, A.; Xue, W. Thermal axion production. J. Cosmol. Astropart. Phys. 2014, 2014, 011. [Google Scholar] [CrossRef]
- D’Eramo, F.; Hajkarim, F.; Yun, S. Thermal Axion Production at Low Temperatures: A Smooth Treatment of the QCD Phase Transition. Phys. Rev. Lett. 2022, 128, 152001. [Google Scholar] [CrossRef]
- D’Eramo, F.; Hajkarim, F.; Yun, S. Thermal QCD Axions across Thresholds. J. High Energy Phys. 2021, 10, 224. [Google Scholar] [CrossRef]
- Bouzoud, K.; Ghiglieri, J. Thermal axion production at hard and soft momenta. arXiv 2024, arXiv:2404.06113. [Google Scholar]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong p and t Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 328. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Redondo, J.; Postma, M. Massive hidden photons as lukewarm dark matter. J. Cosmol. Astropart. Phys. 2009, 2009, 005. [Google Scholar] [CrossRef]
- Vogel, H.; Redondo, J. Dark Radiation constraints on minicharged particles in models with a hidden photon. J. Cosmol. Astropart. Phys. 2014, 2014, 029. [Google Scholar] [CrossRef]
- Salvio, A. Thermal production of massless dark photons. J. Cosmol. Astropart. Phys. 2023, 2023, 035. [Google Scholar] [CrossRef]
- Holdom, B. Two U(1)’s and Epsilon Charge Shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar] [CrossRef]
- Fabbrichesi, M.; Gabrielli, E.; Lanfranchi, G. The Dark Photon. arXiv 2020, arXiv:2005.01515. [Google Scholar]
- Giudice, G.F.; Notari, A.; Raidal, M.; Riotto, A.; Strumia, A. Towards a complete theory of thermal leptogenesis in the SM and MSSM. Nucl. Phys. B 2004, 685, 89–149. [Google Scholar] [CrossRef]
- Salvio, A.; Lodone, P.; Strumia, A. Towards leptogenesis at NLO: The right-handed neutrino interaction rate. J. High Energy Phys. 2011, 2011, 116. [Google Scholar] [CrossRef]
- Laine, M.; Schroder, Y. Thermal right-handed neutrino production rate in the non-relativistic regime. J. High Energy Phys. 2012, 2012, 68. [Google Scholar] [CrossRef]
- Laine, M. Sterile neutrino rates for general M, T, μ, k: Review of a theoretical framework. Ann. Phys. 2022, 444, 169022. [Google Scholar] [CrossRef]
- Fukugita, M.; Yanagida, T. Barygenesis without grand unification. Phys. Lett. B 1986, 174, 45. [Google Scholar] [CrossRef]
- Asaka, T.; Shaposhnikov, M. The nuMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 2005, 620, 17. [Google Scholar] [CrossRef]
- Salvio, A. A Simple Motivated Completion of the Standard Model below the Planck Scale: Axions and Right-Handed Neutrinos. Phys. Lett. B 2015, 743, 428–434. [Google Scholar] [CrossRef]
- Youla, D.C. A normal Form for a Matrix under the Unitary Congruence Group. Can. J. Math. 1961, 13, 694–704. [Google Scholar] [CrossRef]
- Kajantie, K.; Rummukainen, K.; Shaposhnikov, M. A Lattice Monte Carlo Study of the Hot Electroweak Phase Transition. Nucl. Phys. B 1993, 407, 356–372. [Google Scholar] [CrossRef]
- Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M. The Electroweak Phase Transition: A Non-Perturbative Analysis. Nucl. Phys. B 1996, 466, 189–258. [Google Scholar] [CrossRef]
- Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M. Is there a Hot Electroweak Phase Transition at mH > mW? Phys. Rev. Lett. 1996, 77, 2887–2890. [Google Scholar] [CrossRef] [PubMed]
- Gould, O.; Kozaczuk, J.; Niemi, L.; Ramsey-Musolf, M.J.; Tenkanen, T.V.; Weir, D.J. Non-Perturbative Analysis of the Gravitational Waves from a First-Order Electroweak Phase Transition. Phys. Rev. D 2019, 100, 115024. [Google Scholar] [CrossRef]
- Gould, O.; Güyer, S.; Rummukainen, K. First-Order Electroweak Phase Transitions: A Nonperturbative update. Phys. Rev. D 2022, 106, 11. [Google Scholar] [CrossRef]
- Linde, A.D. Phase Transitions in Gauge Theories and Cosmology. Rep. Prog. Phys. 1979, 42, 389. [Google Scholar] [CrossRef]
- Linde, A.D. Infrared Problem in Thermodynamics of the Yang-Mills Gas. Phys. Lett. B 1980, 96, 289–292. [Google Scholar] [CrossRef]
- Coleman, S.R.; Weinberg, E.J. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. D 1973, 7, 1888. [Google Scholar] [CrossRef]
- Gildener, E.; Weinberg, S. Symmetry Breaking and Scalar Bosons. Phys. Rev. D 1976, 13, 3333. [Google Scholar] [CrossRef]
- Salvio, A. Pulsar timing arrays and primordial black holes from a supercooled phase transition. Phys. Lett. B 2024, 852, 138639. [Google Scholar] [CrossRef]
- Ghoshal, A.; Salvio, A. Gravitational waves from fundamental axion dynamics. J. High Energy Phys. 2020, 12, 049. [Google Scholar] [CrossRef]
- Salvio, A. Model-independent radiative symmetry breaking and gravitational waves. J. Cosmol. Astropart. Phys. 2023, 2023, 051. [Google Scholar] [CrossRef]
- Salvio, A. Supercooling in radiative symmetry breaking: Theory extensions, gravitational wave detection and primordial black holes. J. Cosmol. Astropart. Phys. 2023, 12, 046. [Google Scholar] [CrossRef]
- Salvio, A. Dimensional Transmutation in Gravity and Cosmology. Int. J. Mod. Phys. A 2021, 36, 2130006. [Google Scholar] [CrossRef]
- Coleman, S.R. The Fate of the False Vacuum. 1. Semiclassical Theory. Phys. Rev. D 1977, 15, 2929–2936. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Coleman, S.R. The Fate of the False Vacuum. 2. First Quantum Corrections. Phys. Rev. D 1977, 16, 1762–1768. [Google Scholar] [CrossRef]
- Linde, A.D. Fate of the False Vacuum at Finite Temperature: Theory and Applications. Phys. Lett. B 1981, 100, 37–40. [Google Scholar] [CrossRef]
- Linde, A.D. Decay of the False Vacuum at Finite Temperature. Nucl. Phys. B 1983, 216, 421, Erratum in Nucl. Phys. B 1983, 223, 544. [Google Scholar] [CrossRef]
- Salvio, A.; Strumia, A.; Tetradis, N.; Urbano, A. On gravitational and thermal corrections to vacuum decay. J. High Energy Phys. 2016, 2016, 54. [Google Scholar] [CrossRef]
- Buttazzo, D.; Degrassi, G.; Giardino, P.P.; Giudice, G.F.; Sala, F.; Salvio, A.; Strumia, A. Investigating the near-criticality of the Higgs boson. J. High Energy Phys. 2013, 12, 089. [Google Scholar] [CrossRef]
- Bezrukov, F.; Shaposhnikov, M. Higgs inflation at the critical point. Phys. Lett. B 2014, 734, 249. [Google Scholar] [CrossRef]
- Hamada, Y.; Kawai, H.; Oda, K.y.; Park, S.C. Higgs inflation from Standard Model criticality. Phys. Rev. D 2015, 91, 053008. [Google Scholar] [CrossRef]
- Salvio, A. Initial Conditions for Critical Higgs Inflation. Phys. Lett. B 2018, 780, 111. [Google Scholar] [CrossRef]
- Salvio, A. Critical Higgs inflation in a Viable Motivated Model. Phys. Rev. D 2019, 99, 015037. [Google Scholar] [CrossRef]
- Salvio, A. BICEP/Keck data and quadratic gravity. J. Cosmol. Astropart. Phys. 2022, 2022, 027. [Google Scholar] [CrossRef]
- Podo, A.; Santoni, L. Fermions at finite density in the path integral approach. J. High Energy Phys. 2024, 2024, 182. [Google Scholar] [CrossRef]
- Grasso, D. Graviton production by a thermal bath. In Proceedings of the 28th International Cosmic Ray Conference (ICRC 2003), Tsukuba, Japan, 31 July–7 August 2003. [Google Scholar]
- Ghiglieri, J.; Laine, M. Gravitational wave background from Standard Model physics: Qualitative features. J. Cosmol. Astropart. Phys. 2015, 2015, 022. [Google Scholar] [CrossRef]
- Ghiglieri, J.; Jackson, G.; Laine, M.; Zhu, Y. Gravitational wave background from Standard Model physics: Complete leading order. J. High Energy Phys. 2020, 2020, 92. [Google Scholar] [CrossRef]
- Ghiglieri, J.; Laine, M.; Schütte-Engel, J.; Speranza, E. Double-graviton production from Standard Model plasma. J. Cosmol. Astropart. Phys. 2024, 2024, 062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvio, A. Introduction to Thermal Field Theory: From First Principles to Applications. Universe 2025, 11, 16. https://doi.org/10.3390/universe11010016
Salvio A. Introduction to Thermal Field Theory: From First Principles to Applications. Universe. 2025; 11(1):16. https://doi.org/10.3390/universe11010016
Chicago/Turabian StyleSalvio, Alberto. 2025. "Introduction to Thermal Field Theory: From First Principles to Applications" Universe 11, no. 1: 16. https://doi.org/10.3390/universe11010016
APA StyleSalvio, A. (2025). Introduction to Thermal Field Theory: From First Principles to Applications. Universe, 11(1), 16. https://doi.org/10.3390/universe11010016