Experimental Model Development for the Attenuation Coefficient Estimation of Terrestrial Optical Wireless Links over the Sea
<p>Overview of the link.</p> "> Figure 2
<p>Experimental and regression model of Equation (6) results.</p> "> Figure 3
<p>Experimental results versus the corresponding from the experimental model of Equation (6).</p> "> Figure 4
<p>Measurements of temperature (second from the top panel), wind speed (third from the top panel), and relative humidity (lower panel), for each sample of regression model and experimental data.</p> "> Figure 5
<p>Experimental measurements and model predictions, i.e., Equation (6), for 6 February 2020.</p> "> Figure 6
<p>Experimental measurements and model predictions, i.e., Equation (6), for 16 February 2020.</p> "> Figure 7
<p>Experimental measurements and model predictions, i.e., Equation (6), for 15 February 2020.</p> "> Figure 8
<p>Experimental measurements and model predictions, i.e., Equation (6), for 30 January 2020.</p> "> Figure 9
<p>Experimental measurements and model predictions, i.e., Equation (6), for 6 April 2020.</p> "> Figure 10
<p>Experimental measurements and model predictions, i.e., Equation (6), for 16 November 2019.</p> "> Figure 11
<p>Experimental measurements and model predictions, i.e., Equation (6), for 17 November 2019.</p> "> Figure A1
<p>RSSI as a function of distance.</p> "> Figure A2
<p>RSSI and Optical power linear fitting.</p> ">
Abstract
:1. Introduction
2. Theoretical Analysis of the Model
2.1. Geometrical Losses Attenuation
2.2. Atmospheric Attenuation
3. Experimental Setup
4. Model Analysis and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pham, A.T.; Trinh, P.V.; Mai, V.V.; Dang, N.T.; Truong, C.-T. Hybrid free-space optics/millimeter-wave architecture for 5G cellular backhaul networks. In Proceedings of the 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 28 June–2 July 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Malik, S.; Sahu, P.K. Free space optics/millimeter-wave based vertical and horizontal terrestrial backhaul network for 5G. Opt. Commun. 2020, 459, 0030–4018. [Google Scholar] [CrossRef]
- Gebhart, M.; Leitgeb, E.; Sheikh Muhammad, S.; Flecker, B.; Chlestil, C.; Al Naboulsi, M.; de Fornel, F.; Sizun, H. Measurement of light attenuation in dense fog conditions for FSO applications. In Proceedings of the SPIE 5891, Atmospheric Optical Modeling, Measurement, and Simulation, 58910K, San Diego, CA, USA,, 18 August 2005. [Google Scholar] [CrossRef]
- Ghoname, S.; Fayed, H.A.; El Aziz, A.A.; Aly, M.H. Performance analysis of FSO communication system: Effects of fog, rain and humidity. In Proceedings of the 2016 Sixth International Conference on Digital Information Processing and Communications (ICDIPC), Beirut, Lebanon, 21–23 April 2016; pp. 151–155. [Google Scholar] [CrossRef]
- Nadeem, F.; Flecker, B.; Leitgeb, E.; Khan, M.S.; Awan, M.S.; Javornik, T. Comparing the fog effects on hybrid network using optical wireless and GHz links. In Proceedings of the 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 25 July 2008; pp. 278–282. [Google Scholar] [CrossRef]
- Leitgeb, E.; Gebhart, M.; Fasser, P.; Bregenzer, J.; Tanczos, J. Impact of atmospheric effects in Free Space Optics Transmission systems. In Proceedings of the High-Power Lasers and Applications, San Jose, CA, USA, 25–31 January 2003; Volume 4976-28. [Google Scholar]
- Nistazakis, H.E.; Tsiftsis, T.A.; Tombras, G.S. Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Commun. 2009, 3, 1402. [Google Scholar] [CrossRef]
- Peppas, K.P. A Simple, Accurate Approximation to the Sum of Gamma–Gamma Variates and Applications in MIMO Free-Space Optical Systems. IEEE Photon.-Technol. Lett. 2011, 23, 839–841. [Google Scholar] [CrossRef]
- Datsikas, C.K.; Peppas, K.P.; Sagias, N.C.; Tombras, G.S. Serial Free-Space Optical Relaying Communications Over Gamma-Gamma Atmospheric Turbulence Channels. J. Opt. Commun. Netw. 2010, 2, 576–586. [Google Scholar] [CrossRef]
- Stassinakis, A.; Nistazakis, H.; Peppas, K.; Tombras, G. Improving the availability of terrestrial FSO links over log normal atmospheric turbulence channels using dispersive chirped Gaussian pulses. Opt. Laser Technol. 2013, 54, 329–334. [Google Scholar] [CrossRef]
- Ninos, M.; Nistazakis, H.; Tombras, G. On the BER performance of FSO links with multiple receivers and spatial jitter over gamma-gamma or exponential turbulence channels. Optik 2017, 138, 269–279. [Google Scholar] [CrossRef]
- Varotsos, G.K.; Nistazakis, H.E.; Gappmair, W.; Sandalidis, H.G.; Tombras, G.S. DF relayed subcarrier FSO links over Malaga turbulence channels with phase noise and non-zero boresight pointing errors. Appl. Sci. 2018, 8, 664. [Google Scholar] [CrossRef] [Green Version]
- Bang, C.-H.; Lee, J.; Hong, S.-Y. Predictability Experiments of Fog and Visibility in Local Airports over Korea using the WRF Model. J. Korean Soc. Atmos. Environ. 2008, 24, 92–101. [Google Scholar]
- Al-Gailani, S.A.; Mohammad, A.B.; Islam, M.S.; Sheikh, U.U.; Shaddad, R.Q. Tropical temperature and humidity modeling for free space optical link. J. Opt. 2015, 45, 87–91. [Google Scholar] [CrossRef]
- Ijaz, M.; Ghassemlooy, Z.; Pesek, J.; Fiser, O.; Le Minh, H.; Bentley, E. Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions. J. Light. Technol. 2013, 31, 1720–1726. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.O.; Leitgeb, E. Free-Space Optical Communication Using Subcarrier Modulation in Gamma-Gamma Atmospheric Turbulence. In Proceedings of the 2007 9th International Conference on Transparent Optical Networks, Rome, Italy, 1–5 July 2007; pp. 156–160. [Google Scholar] [CrossRef]
- Stassinakis, A.N.; Nistazakis, H.E.; Tombras, G.S. Comparative performance study of one or multiple receivers schemes for FSO links over gamma–gamma turbulence channels. J. Mod. Opt. 2012, 59, 1023–1031. [Google Scholar] [CrossRef]
- Raj, A.A.B.; Selvi, J.A.V.; Durairaj, S. Comparison of different models for ground-level atmospheric turbulence strength (Cn2) prediction with a new model according to local weather data for FSO applications. Appl. Opt. 2015, 54, 802–815. [Google Scholar]
- Deng, H.; Tan, H.; Li, F.; Cai, M.; Chan, P.; Xu, H.; Huang, X.; Wu, D. Impact of relative humidity on visibility degradation during a haze event: A case study. Sci. Total Environ. 2016, 569–570, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Kruse, P.W. Elements of Infrared Technology: Generation, Transmission and Detection; Wiley and Sons: New York, NY, USA, 1962. [Google Scholar]
- Kim, I.I.; McArthur, B.; Korevaar, E.J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Proceedings of the SPIE 4214, Optical Wireless Communications III, Boston, MA, USA, 6 February 2001. [Google Scholar] [CrossRef]
- Latal, J.; Hajek, L.; Vanderka, A.; Vitasek, J. Regresion models utilization for RSSI prediction of professional FSO link with regards to atmosphere phenomena. In Proceedings of the 2016 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), Graz, Austria, 14–16 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Grabner, M.; Kvicera, V. The wavelength dependent model of extinction in fog and haze for free space optical communication. Opt. Express 2011, 19, 3379–3386. [Google Scholar] [CrossRef]
- Alheadary, W.G.; Park, K.-H.; Alfaraj, N.; Guo, Y.; Stegenburgs, E.; Ng, T.K.; Ooi, B.S.; Alouini, M.-S. Free-space optical channel characterization and experimental validation in a coastal environment. Opt. Express 2018, 26, 6614–6628. [Google Scholar] [CrossRef] [Green Version]
- Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.D.; Cohn, K. Experimental Performance Analysis of an Optical Communication Channel over Maritime Environment. Electronics 2020, 9, 1109. [Google Scholar] [CrossRef]
- Moore, C.I.; Burris, H.R.; Stell, M.F.; Wasiczko, L.; Suite, M.R.; Mahon, R.; Rabinovich, W.S.; Gilbreath, G.C.; Scharpf, W.J. Atmospheric turbulence studies of a 16-km maritime path. In Proceedings of the SPIE 5793, Atmospheric Propagation II, Orlando, FL, USA, 25 May 2005. [Google Scholar]
- Grant, K.J.; Mudge, K.A.; Clare, B.A.; Perejma, A.S.; Martinsen, W.M. Maritime Laser Communications Trial 98152-19703. In Command, Control, Communications and Intelligence Division; DSTO: Edinburgh, Australia, 2012. [Google Scholar]
- Latal, J.; Hajek, L.; Vanderka, A.; Vitasek, J.; Koudelka, P.; Hejduk, S. Real Measurements and Evaluation of the Influence of Atmospheric Phenomena on FSO Combined with Modulation Formats. Electron. ETF 2017, 20, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Esmail, M.A.; Fathallah, H.; Alouini, M.-S. An Experimental Study of FSO Link Performance in Desert Environment. IEEE Commun. Lett. 2016, 20, 1888–1891. [Google Scholar] [CrossRef] [Green Version]
- Esmail, M.A.; Fathallah, H.; Alouini, M.-S. Outdoor FSO Communications under Fog: Attenuation Modeling and Performance Evaluation. IEEE Photon.-J. 2016, 8, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Matondo, S.B.; Owolawi, P.A. FSO Rain Attenuation Prediction Using Non-linear Least Square Regression. In Proceedings of the 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC), Vanderbijlpark, South Africa, 21–22 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Tai, H.; Zhuang, Z.; Jiang, L.; Sun, D. Visibility Measurement in an Atmospheric Environment Simulation Chamber. Curr. Opt. Photon. 2017, 1, 186–195. [Google Scholar]
- Massart, D.L.; Vandeginste, B.G.M.; Buydens, L.M.C.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. Chapter 10 Multiple and polynomial regression. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 1998; pp. 263–303. ISBN 9780444897244. [Google Scholar] [CrossRef]
- Uhlig, E.-M.; Von Hoyningen-Huene, W. Correlation of the atmospheric extinction coefficient with the concentration of particulate matter for measurements in a polluted urban area. Atmos. Res. 1993, 30, 181–195. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Distance | 2940 m |
Height | 35 m |
Bit Error Rate | Less than 10−12 (unfaded) |
Wavelength | 850 nm (total frequency range between 830 nm and 860 nm) |
Bit Rate | Up to 155 Mbps |
Output Power | 3 laser beams with total power 150 mW |
Total Power Consumption | 22 W |
Beam Divergence | 2 mrad |
Transmitter aperture diameter | 5 cm |
Receiver aperture diameter | 20 cm |
Receiver Field of View (FOV) | 2 mrad |
Sensitivity | −46 dBm |
Eye Safety Class | 1M |
Parameter | Range |
---|---|
Time | 00:00–05:00 and 20:00–23:59 |
Temperature | 10–25 °C |
Relative Humidity | 40–90% |
Wind Speed | 0–20 m/s |
Rain Rate | 0 mm/h |
b0 | 9.4600 × 10−1 | b7 | −2.2800 × 10−2 |
b1 | 4.6566 × 10−9 | b8 | 9.7646 × 10−7 |
b2 | 5.9130 × 10−12 | b9 | 2.0000 × 10−3 |
b3 | −5.0450 × 10−5 | b10 | 1.1043 × 10−6 |
b4 | −1.0050 × 10−7 | b11 | 4.9150 × 10−5 |
b5 | −3.2280 × 10−4 | b12 | −9.4390 × 10−7 |
b6 | −2.2190 × 10−4 | b13 | −2.2860 × 10−8 |
Coefficient of Multiple Correlation R2 | 0.7612 |
Adjusted Coefficient of Multiple Correlation | 0.7610 |
Residual Mean Variance | 5.1482 × 10−4 |
Sum of Regression Variance | 19.9718 |
Sum of Residual Variance | 6.2638 |
Sum of Total Variance | 26.2356 |
Day | Time | R2 |
---|---|---|
6 February 2020 (Figure 5) | 00:00–01:00 | 0.632 |
20:00–23:59 | <0.5 | |
16 February 2020 (Figure 6) | 00:00–05:00 | 0.741 |
20:00–23:59 | 0.584 | |
15 February 2020 (Figure 7) | 00:00–05:00 | <0.5 |
20:00–23:59 | 0.776 | |
30 January 2020 (Figure 8) | 00:00–05:00 | 0.701 |
20:00–23:59 | 0.784 |
Day | Time | R2 |
---|---|---|
6 April 2020 (Figure 9) | 00:00–01:00 | <0.5 |
20:00–23:59 | 0.783 | |
16 November 2019 (Figure 10) | 00:00–05:00 | 0.667 |
20:00–23:59 | 0.752 | |
17 November 2019 (Figure 11) | 00:00–05:00 | 0.791 |
Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | Attenuation Coefficient Mean Value | Attenuation Coefficient Standard Deviation |
---|---|---|---|---|
11–12 | 60–61 | 1.0–1.5 | 0.3371 | 0.0058 |
13–14 | 74–75 | 1.5–2.0 | 0.3821 | 0.0241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stassinakis, A.N.; Papavgeris, G.A.; Nistazakis, H.E.; Tsigopoulos, A.D.; Androutsos, N.A.; Tombras, G.S. Experimental Model Development for the Attenuation Coefficient Estimation of Terrestrial Optical Wireless Links over the Sea. Telecom 2021, 2, 93-107. https://doi.org/10.3390/telecom2010007
Stassinakis AN, Papavgeris GA, Nistazakis HE, Tsigopoulos AD, Androutsos NA, Tombras GS. Experimental Model Development for the Attenuation Coefficient Estimation of Terrestrial Optical Wireless Links over the Sea. Telecom. 2021; 2(1):93-107. https://doi.org/10.3390/telecom2010007
Chicago/Turabian StyleStassinakis, Argyris N., George A. Papavgeris, Hector E. Nistazakis, Andreas D. Tsigopoulos, Nikolaos A. Androutsos, and George S. Tombras. 2021. "Experimental Model Development for the Attenuation Coefficient Estimation of Terrestrial Optical Wireless Links over the Sea" Telecom 2, no. 1: 93-107. https://doi.org/10.3390/telecom2010007
APA StyleStassinakis, A. N., Papavgeris, G. A., Nistazakis, H. E., Tsigopoulos, A. D., Androutsos, N. A., & Tombras, G. S. (2021). Experimental Model Development for the Attenuation Coefficient Estimation of Terrestrial Optical Wireless Links over the Sea. Telecom, 2(1), 93-107. https://doi.org/10.3390/telecom2010007