Experimental Performance Analysis of an Optical Communication Channel over Maritime Environment
<p>The laser communications link located across Piraeus harbor entrance.</p> "> Figure 2
<p>The FSO link from the Psitalia Island point of view.</p> "> Figure 3
<p>The MRV TS5000/155 FSO system on the Hellenic Naval Academy and the co-located ambient weather WS-2000, weather station.</p> "> Figure 4
<p>Air Temperature, Dew Point and Relative Humidity fluctuations over the data collection period.</p> "> Figure 5
<p>Air Pressure, Wind Speed and Solar Radiation fluctuations over the data collection period.</p> "> Figure 6
<p>Comparison between observed and modeled RSSI for the data collection period.</p> "> Figure 7
<p>Versus hourly rainfall rate measured data.</p> "> Figure 8
<p>Model evaluation for measured RSSI data for the period 10–15 January 2020. The grey line shows the literature modeled RSSI proposed by J. Latal et al. [<a href="#B17-electronics-09-01109" class="html-bibr">17</a>].</p> "> Figure 9
<p>Model evaluation for measured RSSI data for the period 24–31 January 2020. The grey line shows the literature modeled RSSI proposed by J. Latal et al.</p> "> Figure 10
<p><math display="inline"><semantics> <mrow> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> </semantics></math> parameter for empirical models over the period 10–15 January 2020.</p> "> Figure 11
<p><math display="inline"><semantics> <mrow> <msubsup> <mi>C</mi> <mi>n</mi> <mn>2</mn> </msubsup> </mrow> </semantics></math> parameter for empirical models over the period 24–31 January 2020.</p> "> Figure 12
<p>PDF fits of gamma, lognormal and Weibull distributions for observed RSSI data for the time period from 30 November 2019 to 10 January 2020.</p> ">
Abstract
:1. Introduction
2. Atmospheric Turbulence
3. Experimental Setup
4. Results and Analysis
4.1. Regression Model
4.2. Model Validation
4.3. Refractive Index Structure Parameter Empirical Models
4.4. Distribution Fitting Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Perram, G.P.; Cusumano, S.J.; Hengehold, R.L.; Fiorino, S.T. Introduction to Laser Weapon Systems, 1st ed.; Directed Energy Professional Society: Albuquerque, NM, USA, 2010. [Google Scholar]
- Ghassemlooy, Z.; Popoola, W.O. Terrestrial Free-Space Optical Communications. In Mobile and Wireless Communications Network Layer and Circuit Level Design; Fares, S.A., Adachi, F., Eds.; Books on Demand: Metro Manila, Philippines, 2010; pp. 355–392. [Google Scholar]
- Andrews, L.C.; Phillips, R.L.; Hopen, C.Y. Laser Beam Scintillation with Applications, 2nd ed.; SPIE: Bellingham, WA, USA, 2001. [Google Scholar]
- Majumdar, A.K. Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. 2005, 2, 345–396. [Google Scholar] [CrossRef]
- Moore, C.I.; Burris, H.R.; Stell, M.F.; Wasiczko, L.; Suite, M.R.; Mahon, R.; Rabinovich, W.S.; Gilbreath, G.C.; Scharpf, W.J. Atmospheric turbulence studies of a 16-km maritime path. In Proceedings of the SPIE 5793, Atmospheric Propagation II, Orlando, FL, USA, 25 May 2005. [Google Scholar]
- Wasiczko, L.M.; Moore, C.I.; Burris, H.R.; Suite, M.; Stell, M.; Murphy, J.; Gilbreath, G.C.; Rabinovich, W.; Scharpf, W. Characterization of the Marine Atmosphere for Free-Space Optical Communication. In Proceedings of the SPIE 6215, Atmospheric Propagation III, Orlando (Kissimmee), FL, USA, 17 May 2006. [Google Scholar]
- Grant, K.J.; Mudge, K.A.; Clare, B.A.; Perejma, A.S.; Martinsen, W.M. Maritime Laser Communications Trial 98152-19703. Command, Control, Communications and Intelligence Division; DSTO: Edinburgh, Australia, 2012. [Google Scholar]
- De Jong, A.N.; Schwering, P.B.W.; van Eijk, A.M.G.; Gunter, W.H. Validation of Atmospheric propagation models in littoral waters. Opt. Eng. 2013, 52. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.I.; Suite, M.R.; Murphy, J.L.; Tugman, J.E.; Ferraro, M.S.; Wade, T.; Mahon, F.R.; Goetz, P.G.; Rabinovich, W.S.; Burris, H.R.; et al. MIO Tar2host Lasercomm Experiment in Trident Warrior 08. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008. [Google Scholar]
- Alheadary, W.G.; Park, K.-H.; Alfaraj, N.; Guo, Y.; Stegenburgs, E.; Ng, T.K.; Ooi, B.S.; Alouini, M.-S. Free-space optical channel characterization and experimental validation in a coastal environment. Opt. Express 2018, 26, 6614–6628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alheadary, W.G.; Park, K.-H.; Ooi, B.S.; Alouini, M.-S. Free-space optical channel characterization in a coastal environment. J. Commun. Inf. Netw. 2017, 2, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Michael, S.; Parenti, R.R.; Walther, F.G.; Volpicelli, A.M.; Moores, J.D.; Murphy, R.W.W., Jr. Comparison of Scintillation Measurements from a 5 km Communications Link to Standard Statistical Models. In Proceedings of the SPIE 7324, Atmospheric Propagation VI, Orlando, FL, USA, 2 May 2009. [Google Scholar]
- Bourazani, D.; Stasinakis, A.N.; Nistazakis, H.E.; Varotsos, G.K.; Tsigopoulos, A.D.; Tombras, G.S. Experimental Accuracy Investigation for Irradiance Fluctuations of FSO Links Modeled by Gamma Distribution. In Proceedings of the 8th International Conference from Scientific Computing to Computational Engineering, Athens, Greece, 4–7 July 2018. [Google Scholar]
- Kampouraki, M.N.; Stasinakis, A.N.; Nistazakis, H.E.; Tsigopoulos, A.D.; Tombras, G.S.; Chronopoulos, G.G.; Fafalios, M.E. Experimental and Theoretical Bit Rate Estimation of Turbulent FSO Link Over the Maritime Area at Piraeus Port. In Proceedings of the 6th International Conference from Scientific Computing to Computational Engineering, Athens, Greece, 9–12 July 2014. [Google Scholar]
- Tunick, A. Statistical analysis of optical turbulence intensity over a 2.33 km propagation path. Opt. Express 2007, 15, 3619–3628. [Google Scholar] [CrossRef] [PubMed]
- Tunick, A.; Nikolay, T.; Mikhail, V.; Gary, C. Characterization of Optical Turbulence (Cn2) Data Measured at the ARL A_LOT Facility; Technical Report for U.S. Army Research Laboratory: Adelphi, MD, USA, September 2005. [Google Scholar]
- Latal, J.; Vitasek, J.; Hajek, L.; Vanderka, A.; Koudelka, P.; Kepak, S.; Vasinek, V. Regression Models Utilization for RSSI Prediction of Professional FSO Link with Regards to Atmosphere Phenomena. In Proceedings of the 2016. International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom), Graz, Austria, 14–16 September 2016. [Google Scholar]
- Latal, J.; Hajek, L.; Vanderka, A.; Vitasek, J.; Koudelka, P.; Hejduk, S. Real Measurements and Evaluation of the Influence of Atmospheric Phenomena on FSO Combined with Modulation Formats. Electronics 2016, 20. [Google Scholar] [CrossRef] [Green Version]
- Hajek, L.; Vitasek, J.; Vanderka, A.; Latal, J.; Perecar, F.; Vasinek, V. Statistical prediction of the atmospheric behavior for free space optical link. In Proceedings of the SPIE 9614, Laser Communication and Propagation through the Atmosphere and Oceans IV, San Diego, CA, USA, 4 September 2015. [Google Scholar]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Media, 2nd ed.; SPIE Optical Engineering Press: Bellingham, WA, USA, 2005. [Google Scholar]
- Oermann, R.J. Novel Methods for the Quantification of Atmospheric Turbulence Strength in the Atmospheric Surface Layer. Ph.D. Thesis, School of Chemistry and Physics, University of Adelaide, Adelaide, SA, Australia, 2014. [Google Scholar]
- Nistazakis, H.E.; Katsis, A.; Tombras, G.S. On the Reliability and Performance of FSO and Hybrid FSO Communication Systems over Turbulent Channels; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 69–112. [Google Scholar]
- Sabot, D.; Kopeika, N.S. Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: Models and validation. Opt. Eng. 1992, 31. [Google Scholar] [CrossRef]
- Lionis, A.; Cohn, K.; Pogue, C. Experimental Design of a UCAV-based High Energy Laser Weapon. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, December 2016. [Google Scholar]
- Rabinovich, W.S.; Moore, C.I.; Mahon, R.; Goetz, P.G.; Burris, H.R.; Ferraro, M.S.; Murphy, J.L.; Thomas, L.M.; Gilbreath, G.C.; Vilcheck, M.; et al. Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory. Appl. Opt. 2015, 54, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
Temporal Hour Interval | Weight Factor |
---|---|
until −4 | 0.11 |
−4 to −3 | 0.11 |
−3 to −2 | 0.07 |
−2 to −1 | 0.08 |
−1 to 0 | 0.06 |
0 to 1 | 0.05 |
1 to 2 | 0.10 |
2 to 3 | 0.51 |
3 to 4 | 0.75 |
4 to 5 | 0.95 |
5 to 6 | 1.00 |
6 to 7 | 0.90 |
7 to 8 | 0.80 |
8 to 9 | 0.59 |
9 to 10 | 0.32 |
10 to 11 | 0.22 |
11 to 12 | 0.10 |
12 to 13 | 0.08 |
over 13 | 0.13 |
Parameter | Value |
---|---|
Operating Wavelength | 850 nm |
Light Source | 3 Lasers |
Total Output Power | 150 mW |
Beam Divergence | 2 mrad |
Detector Type | APD |
FOV | 2 mrad |
Sensitivity | −46 dBm |
Air Temperature (°C) | Dew Point (°C) | Relative Humidity (%) | Air Pressure (hPa) | Wind Speed (m/s) | Solar Radiation (W/m2) | |
---|---|---|---|---|---|---|
Mean Value | 14.07 | 8.3 | 69.34 | 1017.77 | 2.09 | 70.5 |
Min. Value | 5.70 | −4.9 | 32.00 | 990.70 | 0.00 | 0.0 |
Max. Value | 22.20 | 14.7 | 94.00 | 1028.70 | 25.80 | 613.3 |
Air Pressure | Air Temperature | Relative Humidity | Dew Point | Wind Speed | Solar Flux | Hourly Rain Rate | RSSI | |
---|---|---|---|---|---|---|---|---|
Air Pressure | 1 | - | - | - | - | - | - | - |
Air Temperature | −0.26383 | 1 | - | - | - | - | - | - |
Relative Humidity | −0.24084 | 0.234145 | 1 | - | - | - | - | - |
Dew Point | −0.31862 | 0.77857 | 0.788697 | 1 | - | - | - | - |
Wind Speed | −0.02946 | −0.17976 | −0.42763 | −0.39007 | 1 | - | - | - |
Solar Flux | 0.058201 | 0.279619 | −0.33786 | −0.04767 | 0.140114 | 1 | - | - |
Hourly Rain Rate | −0.26519 | −0.02916 | 0.236718 | 0.117156 | −0.01767 | −0.04762 | 1 | - |
RSSI | 0.13399 | 0.219768 | −0.56557 | −0.20549 | 0.131537 | 0.44691 | −0.35769 | 1 |
Min. Value (m−2/3) | Max. Value (m−2/3) | Mean Value (m−2/3) | |
---|---|---|---|
Model 1 (10–15 January 2020) | 1.6 × 10−15 | 2.78 × 10−14 | 1.31 × 10−14 |
Model 1 (24–31 January 2020) | 7.166 × 10−15 | 2.985 × 10−14 | 1.47 × 10−14 |
Model 2 (10–15 January 2020) | 1.159 × 10−14 | 2.58 × 10−14 | 1.8728 × 10−14 |
Model 2 (24–31 January 2020) | 1.5398 × 10−14 | 2.7 × 10−14 | 1.9878 × 10−14 |
Huffnagel-Valley | 9.02 × 10−15 m−2/3 |
Model 1 | Cn2 Model 2 | |
---|---|---|
Observed RSSI (10–15 January 2020) | 44.10% (0.65425) | 40.50% (0.63630) |
Modelled RSSI (10–15 January 2020) | 73.97% (0.78042) | 64.79% (0.77280) |
Observed RSSI (24–31 January 2020) | 23.10% (0.46870) | 17.89% (0.42000) |
Modelled RSSI (24–31 January 2020) | 46.36% (0.61640) | 42.24% (0.64820) |
DKL (p(x)||q(x)) | |
---|---|
Gamma | 4.17 × 10−2 |
Lognormal | 4.38 × 10−2 |
Weibull | 7.95 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lionis, A.; Peppas, K.; Nistazakis, H.E.; Tsigopoulos, A.D.; Cohn, K. Experimental Performance Analysis of an Optical Communication Channel over Maritime Environment. Electronics 2020, 9, 1109. https://doi.org/10.3390/electronics9071109
Lionis A, Peppas K, Nistazakis HE, Tsigopoulos AD, Cohn K. Experimental Performance Analysis of an Optical Communication Channel over Maritime Environment. Electronics. 2020; 9(7):1109. https://doi.org/10.3390/electronics9071109
Chicago/Turabian StyleLionis, Antonios, Konstantinos Peppas, Hector E. Nistazakis, Andreas D. Tsigopoulos, and Keith Cohn. 2020. "Experimental Performance Analysis of an Optical Communication Channel over Maritime Environment" Electronics 9, no. 7: 1109. https://doi.org/10.3390/electronics9071109
APA StyleLionis, A., Peppas, K., Nistazakis, H. E., Tsigopoulos, A. D., & Cohn, K. (2020). Experimental Performance Analysis of an Optical Communication Channel over Maritime Environment. Electronics, 9(7), 1109. https://doi.org/10.3390/electronics9071109