Network Pharmacology to Unveil the Mechanism of Berberine in the Treatment of Streptococcus suis Meningitis in Humans and Pigs
<p>Illustration of the study strategy. (TCMSP means Traditional Chinese Medicine Systems Pharmacology Database).</p> "> Figure 2
<p>Berberine and streptococcal meningitis targets. (<b>A</b>) Human <span class="html-italic">S. suis</span> meningitis targets. (<b>B</b>) Porcine <span class="html-italic">S. suis</span> meningitis targets. (<b>C</b>) Berberine targets. (<b>D</b>) Venn diagram of the three groups of targets. (Note: green represents berberine targets; blue represents porcine <span class="html-italic">S. suis</span> meningitis targets; and Cyan represents Human S. suis meningitis targets; the data details of <a href="#toxics-13-00138-f002" class="html-fig">Figure 2</a> in <a href="#app1-toxics-13-00138" class="html-app">Supplementary Materials Tables S1 and S2</a>).</p> "> Figure 3
<p>Screening of the core targets of berberine in alleviating meningitis in pigs and humans based on the STRING database and Cytoscape. (<b>A</b>) Cytoscape analysis of the interconnection of berberine and <span class="html-italic">S. suis</span> meningitis targets (Note: green represents berberine targets; blue represents porcine <span class="html-italic">S. suis</span> meningitis targets; and Cyan represents Human <span class="html-italic">S. suis</span> meningitis targets.). (<b>B</b>) Cytoscape parameters (betweenness > 210.52351395, closeness > 0.203574975, and degree > 11) were set to evaluate the relationship between the key targets (Note: green represents berberine targets; blue represents porcine <span class="html-italic">S. suis</span> meningitis targets; and Cyan represents Human <span class="html-italic">S. suis</span> meningitis targets.). (<b>C</b>) Core targets for further screening based on the Cytoscape database.</p> "> Figure 4
<p>Molecular docking diagram. Molecular models of the binding of berberine with human and porcine TLR4 and FN1. The results are shown as 3D and 2D diagrams: (<b>A</b>,<b>a</b>) berberine–TLR4 (docking score = 4.17) in humans. (<b>B</b>,<b>b</b>) Berberine–TLR4 (docking score = 4.19) in pigs. (<b>C</b>,<b>c</b>) Berberine–FN1 (docking score = 3.78) in humans. (<b>D</b>,<b>d</b>) Berberine–FN1 (docking score = 4.35) in pigs.</p> "> Figure 5
<p>(<b>A</b>) GO and (<b>B</b>) KEGG enrichment analysis of potential targets of berberine to alleviate <span class="html-italic">S. suis</span> meningitis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening of Berberine Targets
2.2. Screening of S. suis Meningitis Targets
2.3. Prediction of Potential Targets of Berberine in Treating S. suis Meningitis
2.4. Construction of a Protein–Protein Interaction (PPI) Network
2.5. Molecular Docking
2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analyses
3. Results
3.1. Screening of the Potential Berberine Targets in Treating S. suis Meningitis
3.2. Screening of Common Targets of Berberine and S. suis Meningitis
3.3. Analysis of the PPI Network and Screening of Core Targets
3.4. Molecular Docking Rresults
3.5. GO and KEGG Enrichment Analysis and the Component–Disease Pathway–Target Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation and Symbols
3D | three-dimensional |
CASP3 | caspase-3 |
ERK | extracellular signal-regulated kinase 1 |
FN1 | fibronectin 1 |
GO | Gene Ontology |
HMOX1 | heme oxygenase 1 |
ICAM-1 | intercellular adhesion molecule 1 |
IL-17 | interleukin 17 |
JNK | c-Jun N-terminal kinase |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KIM-1 | kidney injury molecule-1 |
MAPK | mitogen-associated protein kinase |
MDA | malondialdehyde |
MIC | minimum inhibitory concentration |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NO | nitric oxide |
PCR | polymerase chain reaction |
PI3K | phosphoinositide 3-kinase |
PPI | protein–protein interaction |
S. scrofa | Sus scrofa |
S. suis | Streptococcus suis |
TGF-β | transforming growth factor beta |
TLR4 | Toll-like receptor 4 |
TNF | tumor necrosis factor |
TP53 | tumor protein P53 |
References
- Liedel, C.; Rieckmann, K.; Baums, C.G. A critical review on experimental Streptococcus suis infection in pigs with a focus on clinical monitoring and refinement strategies. BMC Vet. Res. 2023, 19, 188. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Zając, V.; Sroka, J.; Wasiński, B.; Cisak, E.; Sawczyn, A.; Kloc, A.; Wójcik-Fatla, A. Streptococcus suis: A re-emerging pathogen asso-ciated with occupational exposure to pigs or pork products. Part ii—Pathogenesis. Ann. Agric. Environ. Med. 2018, 25, 186–203. [Google Scholar] [CrossRef] [PubMed]
- Lun, Z.R.; Wang, Q.P.; Chen, X.G.; Li, A.X.; Zhu, X.Q. Streptococcus suis: An emerging zoonotic pathogen. Lancet Infect. Dis. 2007, 7, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Werinder, A.; Aspán, A.; Backhans, A.; Sjölund, M.; Guss, B.; Jacobson, M. Streptococcus suis in swedish grower pigs: Occurrence, serotypes, and antimicrobial susceptibility. Acta Vet. Scand. 2020, 62, 36. [Google Scholar] [CrossRef]
- Yu, H.; Jing, H.; Chen, Z.; Zheng, H.; Zhu, X.; Wang, H.; Wang, S.; Liu, L.; Zu, R.; Luo, L.; et al. Human Streptococcus suis outbreak, Sichuan, China. Emerg. Infect. Dis. 2006, 12, 914–920. [Google Scholar] [CrossRef]
- Jover-García, J.; López-Millán, C.; Gil-Tomás, J.J. Emerging infectious diseases: Streptococcus suis meningitis. Rev. Esp. Quimioter. 2020, 33, 385–386. [Google Scholar] [CrossRef]
- Ouattara, M.; Tamboura, M.; Kambire, D.; Sanou, M.; Ouattara, K.; Congo, M.; Kaboré, A.; Sanou, S.; Kabré, E.; Sharpley, S.; et al. Identification of Streptococcus suis meningitis by direct triplex real-time PCR, Burkina Faso. Emerg. Infect. Dis. 2020, 26, 2223–2226. [Google Scholar] [CrossRef]
- Susilawathi, N.M.; Tarini, N.M.A.; Fatmawati, N.N.D.; Mayura, P.I.; Suryapraba, A.A.A.; Subrata, M.; Mahardika, G.N. Streptococcus suis-associated meningitis, Bali, Indonesia, 2014–2017. Emerg. Infect. Dis. 2019, 25, 2235–2242. [Google Scholar] [CrossRef] [PubMed]
- Rayanakorn, A.; Ademi, Z.; Liew, D.; Lee, L.H. Burden of disease and productivity impact of Streptococcus suis infection in thailand. PLoS Negl. Trop. Dis. 2021, 15, e0008985. [Google Scholar] [CrossRef] [PubMed]
- Brizuela, J.; Kajeekul, R.; Roodsant, T.J.; Riwload, A.; Boueroy, P.; Pattanapongpaibool, A.; Thaipadungpanit, J.; Jenjaroenpun, P.; Wongsurawat, T.; Batty, E.M.; et al. Streptococcus suis outbreak caused by an emerging zoonotic strain with acquired multi-drug resistance in Thailand. Microb. Genom. 2023, 9, mgen000952. [Google Scholar] [CrossRef]
- Song, D.; Hao, J.; Fan, D. Biological properties and clinical applications of berberine. Front. Med. 2020, 14, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Fu, Y.; Li, H. Berberine and its derivatives represent as the promising therapeutic agents for inflammatory disorders. Pharmacol. Rep. 2022, 74, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Wahab, A.E.; Ghareeb, D.A.; Sarhan, E.E.; Abu-Serie, M.M.; El Demellawy, M.A. In vitro biological assessment of berberis vulgaris and its active constituent, berberine: Antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement. Altern. Med. 2013, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Och, A.; Podgórski, R.; Nowak, R. Biological activity of berberine-a summary update. Toxins 2020, 12, 713. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Zhou, Y.H.; Ren, Y.Z.; Xu, C.G.; Liu, X.; Liu, B.; Chen, J.Q.; Ding, W.Y.; Zhao, Y.L.; Yang, Y.B.; et al. Intervention effects of water extract, berberine hydrochloride and coptisine from rhizoma coptidis against Streptococcus suis biofilm in vitro. Chin. J. Vet. Med. 2015, 51, 16–19. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Yang, L.; Wang, Y. Berberine protects against neurological impairments and blood-brain barrier injury in mouse model of intracerebral hemorrhage. Neuroimmunomodula 2022, 29, 317–326. [Google Scholar] [CrossRef]
- Ibrahim Fouad, G.; Ahmed, K.A. Neuroprotective potential of berberine against doxorubicin-induced toxicity in rat’s brain. Neurochem. Res. 2021, 46, 3247–3263. [Google Scholar] [CrossRef]
- Aski, M.L.; Rezvani, M.E.; Khaksari, M.; Hafizi, Z.; Pirmoradi, Z.; Niknazar, S.; Mehrjerdi, F.Z. Neuroprotective effect of berberine chloride on cognitive impairment and hippocampal damage in experimental model of vascular dementia. Iran J. Basic Med. Sci. 2018, 21, 53–58. [Google Scholar] [CrossRef]
- Zhou, C.; Yu, T.; Zhu, R.; Lu, J.; Ouyang, X.; Zhang, Z.; Chen, Q.; Li, J.; Cui, J.; Jiang, F.; et al. Timosaponin aiii promotes non-small-cell lung cancer ferroptosis through targeting and facilitating Hsp90 mediated Gpx4 ubiquitination and degradation. Int. J. Biol. Sci. 2023, 19, 1471–1489. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Wang, Y.; Li, J.; Zhou, F.; Xiao, K.; Liu, Y.; Zhang, M.; Wang, S.; Yang, S. Mechanism of sijunzi decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation. J. Ethnopharmacol. 2023, 302, 115876. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. Admetsar 2.0: Web-service for prediction and optimization of chemical admet properties. Bioinformatics 2019, 35, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Stevens, T.; Sangkuhl, K.; Brown, J.T.; Altman, R.B.; Klein, T.E. Pharmgkb summary: Methylphenidate pathway, pharmaco-kinetics/pharmacodynamics. Pharmacogenet. Genom. 2019, 29, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Zhao, D.; Yu, X.; Shen, X.; Zhou, Y.; Wang, S.; Qiu, Y.; Chen, Y.; Zhu, F. TTD: Therapeutic target database describing target druggability information. Nucleic Acids Res. 2023, 52, 1465–1477. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Z.; Jing, T. A novel signature of combing cuproptosis- with ferroptosis-related genes for prediction of prognosis, immunologic therapy responses and drug sensitivity in hepatocellular carcinoma. Front. Oncol. 2022, 12, 1000993. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Sun, P.; Zhao, W.; Li, X. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and who based on Chinese database. Ecotoxicol. Environ. Saf. 2023, 255, 114806. [Google Scholar] [CrossRef] [PubMed]
- Del Conte, A.; Monzon, A.M.; Clementel, D.; Camagni, G.F.; Minervini, G.; E Tosatto, S.C.; Piovesan, D. Ring-pymol: Residue interaction networks of structural ensembles and molecular dynamics. Bioinformatics 2023, 39, btad260. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, Y.; Tang, H.; Wang, Y.; Sun, X. Prevalence of Streptococcus suis in pigs in China during 2000–2021: A systematic review and meta-analysis. One Health 2023, 16, 100513. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, F.; Wang, Y.; Geng, M.; Zhang, Y.; Ma, Q.; Xu, X. Sevoflurane exerts an anti-depressive action by blocking the HMGB1/TLR4 pathway in unpredictable chronic mild stress rats. J. Mol. Neurosci. 2019, 69, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.R.; Shavit, Y.; Grace, P.M.; Rice, K.C.; Maier, S.F.; Watkins, L.R. Exploring the neuroimmunopharmacology of opioids: An integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol. Rev. 2011, 63, 772–810. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Hutchinson, M.R. Exploring neuroinflammation as a potential avenue to improve the clinical efficacy of opioids. Expert Rev. Neurother. 2012, 12, 1311–1324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, M.; Chen, C.; Liu, L.; Wei, X.; Zeng, S. Toll-like receptor 4 (TLR4)/opioid receptor pathway crosstalk and impact on opioid analgesia, immune function, and gastrointestinal motility. Front. Immunol. 2020, 11, 1455. [Google Scholar] [CrossRef]
- Madera-Salcedo, I.K.; Cruz, S.L.; Gonzalez-Espinosa, C. Morphine prevents lipopolysaccharide-induced TNF secretion in mast cells blocking IκB kinase activation and SNAP-23 phosphorylation: Correlation with the formation of a β-arrestin/TRAF6 complex. J. Immunol. 2013, 191, 3400–3409. [Google Scholar] [CrossRef] [PubMed]
- van Loo, G.; Bertrand, M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2023, 23, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Zhang, X. Upregulation of CCT3 promotes cervical cancer progression through FN1. Mol. Med. Rep. 2021, 24, 856. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Xie, J.; Xie, J.; Zhao, R.; Song, C.; Wang, H.; Rong, J.; Yan, L.; Song, Y.; Wang, F.; et al. Weighted correlation network analysis identifies FN1, COL1A1 and serpine1 associated with the progression and prognosis of gastric cancer. Cancer Biomark. 2021, 31, 59–75. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Wang, J.-M.; Wu, T.; Du, X.; Yan, J.; Du, Z.-X.; Wang, H.-Q. BAG5 promotes invasion of papillary thyroid cancer cells via upregulation of fibronectin 1 at the translational level. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118715. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.S.; Huang, T.; Li, L.F.; Shen, Z.B.; Xue, W.H.; Zhao, J. Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Front. Med. 2021, 8, 812278. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, J.; Li, H.; Yu, H.; Chen, S.; Liu, S.; Zhang, C.; He, Y. FN1 is a prognostic biomarker and correlated with immune infiltrates in gastric cancers. Front. Oncol. 2022, 12, 918719. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Wang, Z.X.; Liu, Z.Y. Mirna-1271 inhibits cell proliferation in neuroglioma by targeting fibronectin 1. Mol. Med. Rep. 2017, 16, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Purves-Tyson, T.D.; Robinson, K.; Brown, A.M.; Boerrigter, D.; Cai, H.Q.; Weissleder, C.; Owens, S.J.; Rothmond, D.A.; Weickert, C.S. Increased macrophages and C1QA, C3, C4 transcripts in the midbrain of people with schizophrenia. Front. Immunol. 2020, 11, 2002. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Wang, Y.; Sims, M.; Cai, C.; Pfeffer, L.M. Microrna-1 suppresses glioblastoma in preclinical models by targeting fibronectin. Cancer Lett. 2019, 465, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; St Clair, D.K. Regulation of superoxide dismutase genes: Implications in disease. Free Radic. Biol. Med. 2009, 47, 344–356. [Google Scholar] [CrossRef]
- Trist, B.G.; Hilton, J.B.; Hare, D.J.; Crouch, P.J.; Double, K.L. Superoxide dismutase 1 in health and disease: How a frontline antioxidant becomes neurotoxic. Angew. Chem. Int. Ed. Engl. 2021, 60, 9215–9246. [Google Scholar] [CrossRef] [PubMed]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Li, J.; Zha, D.; Zhang, L.; Gao, P.; Yao, T.; Wu, X. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. Int. Immunopharmacol. 2018, 54, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Ryter, S.W.; Choi, A.M. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl. Res. 2016, 167, 7–34. [Google Scholar] [CrossRef]
- Ping, L.I.; Jingjing, Y.; Da, Z.; Wenyan, N.; Qing, H.E.; Endocrinology, D.O. Effects of berberine on inflammatory FAC-TORS, adipokines and fatty acid metabolism in 3T3-L1 adipocytes. Tianjin Med. J. 2014, 6, 513–516. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Zhang, Q.; Li, J.; Ju, J.; Du, N.; Liu, X.; Chen, X.; Cheng, F.; Yang, L.; et al. Berberine hydrochloride prevents postsurgery intestinal adhesion and inflammation in rats. J. Pharmacol. Exp. Ther. 2014, 349, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Akhzari, M.; Barazesh, M.; Jalili, S.; Farzinezhadi Zadeh, M.M. Berberine recovered oxidative stress induced by sodium nitrite in rat erythrocytes. Drug Metab. Bioanal. Lett. 2022, 15, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Mombeini, M.A.; Kalantar, H.; Sadeghi, E.; Goudarzi, M.; Khalili, H.; Kalantar, M. Protective effects of berberine as a natural antioxidant and anti-inflammatory agent against nephrotoxicity induced by cyclophosphamide in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Kao, C.L.; Liu, C.M. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int. J. Mol. Sci. 2018, 19, 2729. [Google Scholar] [CrossRef]
Model Name | Berberine | Model Name | Berberine |
---|---|---|---|
Ames mutagenesis | − | Honey bee toxicity | − |
Acute Oral Toxicity (c) | III | Hepatotoxicity | + |
Androgen receptor binding | + | Human Ether-a-go-go-Related Gene inhibition | − |
Aromatase binding | − | Human Intestinal Absorption | + |
Avian toxicity | − | Human oral bioavailability | − |
Blood–Brain Barrier | + | MATE1 inhibitior | − |
BRCP inhibitior | − | Mitochondrial toxicity | + |
Biodegradation | − | Micronuclear | + |
BSEP inhibitior | + | Nephrotoxicity | − |
Caco-2 | + | Acute Oral Toxicity | 1.588989 |
Carcinogenicity (binary) | − | OATP1B1 inhibitior | + |
Carcinogenicity (trinary) | Non-required | OATP1B3 inhibitior | + |
Crustacea aquatic toxicity | + | OATP2B1 inhibitior | − |
CYP1A2 inhibition | + | OCT1 inhibitior | + |
CYP2C19 inhibition | − | OCT2 inhibitior | − |
CYP2C9 inhibition | − | P-glycoprotein inhibitior | + |
CYP2C9 substrate | − | P-glycoprotein substrate | − |
CYP2D6 inhibition | + | PPAR gamma | + |
CYP2D6 substrate | − | Plasma protein binding | 0.850641 |
CYP3A4 inhibition | − | Reproductive toxicity | + |
CYP3A4 substrate | + | Respiratory toxicity | + |
CYP inhibitory promiscuity | + | skin sensitisation | − |
Eye corrosion | − | Subcellular localzation | Mitochondria |
Eye irritation | − | Tetrahymena pyriformis | 1.632231 |
Estrogen receptor binding | + | Thyroid receptor binding | + |
Fish aquatic toxicity | − | UGT catelyzed | − |
Glucocorticoid receptor binding | + | Water solubility | −2.97369 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Xue, Y.; Zhang, D.; Lu, Q.; Liu, Y.; Xiong, J.; Ye, C.; Fu, S.; Wu, Z.; Wang, X.; et al. Network Pharmacology to Unveil the Mechanism of Berberine in the Treatment of Streptococcus suis Meningitis in Humans and Pigs. Toxics 2025, 13, 138. https://doi.org/10.3390/toxics13020138
Guo P, Xue Y, Zhang D, Lu Q, Liu Y, Xiong J, Ye C, Fu S, Wu Z, Wang X, et al. Network Pharmacology to Unveil the Mechanism of Berberine in the Treatment of Streptococcus suis Meningitis in Humans and Pigs. Toxics. 2025; 13(2):138. https://doi.org/10.3390/toxics13020138
Chicago/Turabian StyleGuo, Pu, Yunda Xue, Dan Zhang, Qirong Lu, Yu Liu, Jianglin Xiong, Chun Ye, Shulin Fu, Zhongyuan Wu, Xu Wang, and et al. 2025. "Network Pharmacology to Unveil the Mechanism of Berberine in the Treatment of Streptococcus suis Meningitis in Humans and Pigs" Toxics 13, no. 2: 138. https://doi.org/10.3390/toxics13020138
APA StyleGuo, P., Xue, Y., Zhang, D., Lu, Q., Liu, Y., Xiong, J., Ye, C., Fu, S., Wu, Z., Wang, X., & Qiu, Y. (2025). Network Pharmacology to Unveil the Mechanism of Berberine in the Treatment of Streptococcus suis Meningitis in Humans and Pigs. Toxics, 13(2), 138. https://doi.org/10.3390/toxics13020138